
Bulletin of the Technical Committee on

Data
Engineering
June� ���� Vol� �� No� � IEEE Computer Society

Letters
Letter from the Editor�in�Chief �David Lomet �
Letter from the Special Issue Editor �Jennifer Widom �

Special Issue on Materialized Views and Data Warehousing

Maintenance of Materialized Views� Problems� Techniques� and Applications �
� �Ashish Gupta� Inderpal Singh Mumick �

The Maryland ADMS Project� Views R Us� �
� � �Nick Roussopoulos� Chungmin M� Chen� Stephen Kelley� Alex Delis� Yannis Papakonstantinou ��

Supporting Data Integration and Warehousing Using H�O� �
� �Gang Zhou� Richard Hull� Roger King� Jean�Claude Franchitti ��

The Stanford Data Warehousing Project �
� � � � � � � � � � �Joachim Hammer� Hector Garcia�Molina� Jennifer Widom� Wilburt Labio� Yue Zhuge ��

Conference and Journal Notices
���	 ACM SIGMOD Conference on the Management of Data � back cover

Editorial Board

Editor�in�Chief
David B� Lomet
Microsoft Corporation
One Microsoft Way� Bldg� �
Redmond WA �������	��
lomet�microsoft�com

Associate Editors
Shahram Ghandeharizadeh
Computer Science Department
University of Southern California
Los Angeles� CA �����

Goetz Graefe
Microsoft Corporation
One Microsoft Way
Redmond� WA �������	��

Meichun Hsu
EDS Management Consulting Services
	�
� Freedom Circle
Santa Clara CA ����

J� Eliot Moss
Department of Computer Science
University of Massachusetts
Amherst� MA ����	

Jennifer Widom
Department of Computer Science
Stanford University
Palo Alto� CA �
	��

The Bulletin of the Technical Committee on Data
Engineering is published quarterly and is distributed
to all TC members� Its scope includes the design�
implementation� modelling� theory and application of
database systems and their technology�
Letters� conference information� and news should

be sent to the Editor�in�Chief� Papers for each issue
are solicited by and should be sent to the Associate
Editor responsible for the issue�
Opinions expressed in contributions are those of the

authors and do not necessarily re�ect the positions of
the TC on Data Engineering� the IEEE Computer
Society� or the authors
 organizations�
Membership in the TC on Data Engineering is open

to all current members of the IEEE Computer Society
who are interested in database systems�

TC Executive Committee

Chair
Rakesh Agrawal
IBM Almaden Research Center
��� Harry Road
San Jose� CA �����
ragrawal�almaden�ibm�com

Vice�Chair
Nick J� Cercone
Assoc� VP Research� Dean of Graduate Studies
University of Regina
Regina� Saskatchewan S
S �A�
Canada

Secretry�Treasurer
Amit Sheth
Department of Computer Science
University of Georgia

�� Graduate Studies Research Center
Athens GA 	������
�

Conferences Co�ordinator
Benjamin W� Wah
University of Illinois
Coordinated Science Laboratory
�	�� West Main Street
Urbana� IL �����

Geographic Co�ordinators
Shojiro Nishio �Asia�
Dept� of Information Systems Engineering
Osaka University
��� Yamadaoka� Suita
Osaka ���� Japan

Ron Sacks�Davis �Australia�
CITRI
��	 Swanston Street
Carlton� Victoria� Australia 	��	

Erich J� Neuhold �Europe�
Director� GMD�IPSI
Dolivostrasse ��
P�O� Box ��
	 ��
���� Darmstadt� Germany

Distribution
IEEE Computer Society
��	� Massachusetts Avenue
Washington� D�C� ���	�����	
����� 	�������

Letter from the Editor�in�Chief

About this issue

Data warehousing has become an increasingly important part of how users do information management�
It solves two problems� how to o
�load decision support applications from the on�line transaction
system� and how to bring together information from multiple sources so as to provide a consistent
database source for decision support queries� The fact that data in the warehouse is replicated data
raises interesting issues in how it should be maintained and what level of timeliness and consistency
should be guaranteed� The current issue of the Bulletin explores this subject� providing overviews
and speci�cs about ongoing research e
orts� I would like to thank Jennifer Widom for assembling the
issue on this timely and interesting topic� Jennifer deserves a substantial dose of extra credit for this
endeavor� as she has �t this in around having a baby�

State of the Bulletin

This is the second issue of the Bulletin for which there will not be hardcopy distribution� This situation
does a disservice to editors and authors who have worked hard on producing the Bulletin and who
deserve to see their work get the widest possible distribution� It is also a disservice to the membership
of the Technical Committee� some of whom have di
culty accessing the electronic form of the Bulletin
� either because of lack of ftp connectivity to the net� or because of di
culties in transmission� or
because of an inability to print or display the postscript that is sent� I consider the current situation
to be highly unsatisfactory� I believe that continued publication of the Bulletin is at risk should this
persist�

In previous years� hardcopy publication was made possible by using the income from the Data
Engineering Conference� Last year there was no surplus from that conference and hence the Technical
Committee on Data Engineering has no budget for this year� We� the TC on Data Engineering� have
requested permission to charge a hardcopy subscription fee for the Bulletin as a way to cover the cost
of its printing and distribution� The IEEE Computer Society has never consented to this�

The only way to ensure the continued publication of the Bulletin is to provide a solid and durable
way of covering the cost of hardcopy publication� Publication of the Bulletin stopped once before
because such support was not forthcoming� The risk is now very large that that will be the result
again� If you want to save the Bulletin� you need to express to the Computer Society your desire
to see the Bulletin continue publication� The Technical Committee operates under the Technical
Activities Board �TAB�� and the person in charge of the TAB is Computer Society VP Paul Borrill
�paul�borrill�eng�sun�com��

News Flash� The Computer Society has once again provided the Technical Committee on Data
Engineering with funding� including funding for the Bulletin� While this is not the preferred long term
solution� I want to thank the TAB for approving of the budget which enables us to continue the hardcopy
distribution of the Bulletin� This is a token of their recognition of the usefulness of the Bulletin and
their desire to be supportive of it� This is much appreciated�

David Lomet
Microsoft Corporation
lomet�microsoft�com

�

Letter from the Special Issue Editor

The topics of this special issue are materialized views and data warehousing� Interest in view mainte�
nance has been reemerging in the database research community� while data warehousing has become
one of the key buzzwords in industry�

Data warehousing encompasses frameworks� architectures� algorithms� tools� and techniques for
bringing together selected data from multiple databases or other information sources into a single
repository�called a data warehouse�suitable for direct querying or analysis� One can view the prob�
lem of data warehousing as the problem of maintaining� in the warehouse� a materialized view or
views of the relevant data stored in the original information sources� Conventional view maintenance
techniques cannot always be used� however� The �views� stored in data warehouses tend to be more
complicated than conventional views� not necessarily expressible in a standard view de�nition language
�such as SQL�� and often involve historical information that may not remain in the original sources�
Furthermore� the information sources updating the �base data� often are independent of the warehouse
in which the �view� is stored� and base data may be transformed ��scrubbed�� before it is integrated
into the warehouse� There are a number of rich problems to be solved in adapting view maintenance
techniques to the data warehousing environment�

Data warehousing is especially important in industry today because of a need for enterprises to
gather all of their information into a single place for in�depth analysis� and the desire to decouple such
analysis from their on�line transaction processing systems� Analytical processing that involves very
complex queries �often with aggregates� and few or no updates�usually termed decision support�is
one of the primary uses of data warehouses� hence the terms data warehousing and decision support
often are found together� sometimes interchanged� Other relevant terms include data mining� on�line
analytical processing �OLAP�� and multidimensional analysis� which are �in my view� re�nements or
subclasses of decision support� Since decision support often is the goal of data warehousing� clearly
warehouses may be tuned for decision support� and perhaps vice�versa� Nevertheless� decision support
being a very broad area� we have focused this special issue on the problem of data warehousing�

The �rst paper in the issue� by Gupta and Mumick� provides a comprehensive survey of work in
materialized view maintenance� suggests remaining open problems� and describes a number of relevant
applications� The second paper� by Roussopoulos et al�� is an overview of the ADMS project at the
University of Maryland� A variety of important contributions in the database �eld have arisen from
the ADMS project over the last several years� ADMS can in fact be viewed as a data warehousing
system� and as such has been well ahead of its time� The third paper� by Zhou et al�� describes the
H�O project underway at the University of Colorado� H�O elegantly combines the data warehousing
��in�advance�� approach to information integration with the traditional �on�demand� approach �where
information is not collected and integrated until queries are posed�� The last paper� by Hammer et
al�� describes the WHIPS data warehousing project at Stanford University� providing an overview of
the project architecture along with discussion of technical issues such as information source monitoring
and consistency of warehouse data�

I regret that no commercially�oriented papers appear in this issue� I attempted to solicit appropriate
papers� but apparently at this point the market is too hot and the relevant companies too small�
Nevertheless� I certainly hope you enjoy this special issue�

Jennifer Widom
Stanford University

widom�cs�stanford�edu

�

Maintenance of Materialized Views� Problems�

Techniques� and Applications

Ashish Gupta
IBM Almaden Research Center

��� Harry Road
San Jose� CA������

ashish�almaden	ibm	com

Inderpal Singh Mumick
AT
T Bell Laboratories
��� Mountain Avenue
Murray Hill� NJ �����

mumick�research	att	com

Abstract

In this paper we motivate and describe materialized views� their applications� and the problems
and techniques for their maintenance� We present a taxonomy of view maintenance problems
based upon the class of views considered� upon the resources used to maintain the view� upon
the types of modi�cations to the base data that are considered during maintenance� and whether
the technique works for all instances of databases and modi�cations� We describe some of the
view maintenance techniques proposed in the literature in terms of our taxonomy� Finally� we
consider new and promising application domains that are likely to drive work in materialized
views and view maintenance�

� Introduction

What is a view� A view is a derived relation de�ned in terms of base �stored� relations� A view thus
de�nes a function from a set of base tables to a derived table� this function is typically recomputed
every time the view is referenced�

What is a materialized view� A view can be materialized by storing the tuples of the view in the
database� Index structures can be built on the materialized view� Consequently� database accesses to
the materialized view can be much faster than recomputing the view� A materialized view is thus like
a cache � a copy of the data that can be accessed quickly�

Why use materialized views� Like a cache� a materialized view provides fast access to data� the speed
di
erence may be critical in applications where the query rate is high and the views are complex so
that it is not possible to recompute the view for every query� Materialized views are useful in new
applications such as data warehousing� replication servers� chronicle or data recording systems �JMS����
data visualization� and mobile systems� Integrity constraint checking and query optimization can also
bene�t from materialized views�

What is view maintenance� Just as a cache gets dirty when the data from which it is copied is
updated� a materialized view gets dirty whenever the underlying base relations are modi�ed� The
process of updating a materialized view in response to changes to the underlying data is called view
maintenance�

What is incremental view maintenance� In most cases it is wasteful to maintain a view by recomputing
it from scratch� Often it is cheaper to use the heuristic of inertia �only a part of the view changes in
response to changes in the base relations� and thus compute only the changes in the view to update its

�

materialization� We stress that the above is only a heuristic� For example� if an entire base relation is
deleted� it may be cheaper to recompute a view that depends on the deleted relation �if the new view
will quickly evaluate to an empty relation� than to compute the changes to the view� Algorithms that
compute changes to a view in response to changes to the base relations are called incremental view
maintenance algorithms� and are the focus of this paper�

Classi�cation of the View Maintenance Problem There are four dimensions along which the
view maintenance problem can be studied�

� Information Dimension� The amount of information available for view maintenance� Do you have
access to all�some the base relations while doing the maintenance� Do you have access to the
materialized view� Do you know about integrity constraints and keys� We note that the amount
of information used is orthogonal to the incrementality of view maintenance� Incrementality refers
to a computation that only computes that part of the view that has changed� the information
dimension looks at the data used to compute the change to the view�

� Modi�cation Dimension� What modi�cations can the view maintenance algorithm handle� In�
sertion and deletion of tuples to base relations� Are updates to tuples handled directly or are
they modeled as deletions followed by insertions� What about changes to the view de�nition�
Or sets of modi�cations�

� Language Dimension� Is the view expressed as a select�project�join query �also known as a SPJ
views or as a conjunctive query�� or in some other subset of relational algebra� SQL or a subset
of SQL� Can it have duplicates� Can it use aggregation� Recursion� General recursions� or only
transitive closure�

� Instance Dimension� Does the view maintenance algorithm work for all instances of the database�
or only for some instances of the database� Does it work for all instances of the modi�cation� or
only for some instances of the modi�cation� Instance information is thus of two types � database
instance� and modi�cation instance�

We motivate a classi�cation of the view maintenance problem along the above dimensions through
examples� The �rst example illustrates the information and modi�cation dimensions�

Example �� �Information and Modi�cation Dimensions� Consider relation

part�part no� part cost� contract�

listing the cost negotiated under each contract for a part� Note that a part may have a di
erent price
under each contract� Consider also the view expensive parts de�ned as�

expensive parts�part no� � �part no �part cost������part�

The view contains the distinct part numbers for parts that cost more than ����� under at least one
contract �the projection discards duplicates�� Consider maintaining the view when a tuple is inserted
into relation part� If the inserted tuple has part cost����� then the view is unchanged�

However� say part�p�� ����� c��� is inserted that does have cost������ Di
erent view maintenance
algorithms can be designed depending upon the information available for determining if p� should be
inserted into the view�

� The materialized view alone is available� Use the old materialized view to determine if part no

already is present in the view� If so� there is no change to the materialization� else insert part p�
into the materialization�

�

� The base relation part alone is available� Use relation part to check if an existing tuple in the
relation has the same part no but greater or equal cost� If such a tuple exists then the inserted
tuple does not contribute to the view�

� It is known that part no is the key� Infer that part no cannot already be in the view� so it must
be inserted�

Another view maintenance problem is to respond to deletions using only the materialized view�
Let tuple part�p�� ����� c��� be deleted� Clearly part p� must be in the materialization� but we
cannot delete p� from the view because some other tuple� like part�p�� ����� c���� may contribute p�
to the view� The existence of this tuple cannot be �dis�proved using only the view� Thus there is no
algorithm to solve the view maintenance problem for deletions using only the materialized view� Note�
if the relation part was also available� or if the key constraint was known� or if the counts of number
of view tuple derivations were available� then the view could be maintained�

With respect to the information dimension� note that the view de�nition and the actual modi�cation
always have to be available for maintenance� With respect to the modi�cation dimension� updates
typically are not treated as an independent type of modi�cation� Instead� they are modelled as a
deletion followed by an insertion� This model loses information thereby requiring more work and
more information for maintaining a view than if updates were treated independently within a view
maintenance algorithm �BCL��� UO��� GJM����

The following example illustrates the other two dimensions used to characterize view maintenance�

Example �� �Language and Instance Dimensions� Example � considered a view de�nition lan�
guage consisting of selection and projection operations� Now let us extend the view de�nition lan�
guage with the join operation� and de�ne the view supp parts as the equijoin between relations
supp�supp no� part no� price� and part ��part no represents an equijoin on attribute part no��

supp parts�part no� � �part no�supp �part no part�

The view contains the distinct part numbers that are supplied by at least one supplier �the projection
discards duplicates�� Consider using only the old contents of supp parts for maintenance in response
to insertion of part�p�� ����� c���� If supp parts already contains part no p� then the insertion does
not a
ect the view� However� if supp parts does not contain p�� then the e
ect of the insertion cannot
be determined using only the view�

Recall that the view expensive parts was maintainable in response to insertions to part using
only the view� In contrast� the use of a join makes it impossible to maintain supp parts in response
to insertions to part when using only the view�

Note� view supp parts is maintainable if the view contains part no p� but not otherwise� Thus� the
maintainability of a view depends also on the particular instances of the database and the modi�cation�

Figure � shows the problem space de�ned by three of the four dimensions� namely the information�
modi�cation� and language dimensions� The instance dimension is not shown here so as to keep the
�gure manageable� There is no relative ordering between the points on each dimension� they are listed
in arbitrary order� Along the language dimension� chronicle algebra �JMS��� refers to languages that
operate over ordered sequences that may not be stored in the database �see Section ����� Along the
modi�cation dimension� group updates �GJM��� refers to insertion of several tuples using information
derived from a single deleted tuple�

We study maintenance techniques for di
erent points in the shown problem space� For each point
in this ��D space we may get algorithms that apply to all database and modi�cation instances or that
may work only for some instances of each �the fourth dimension��

�

Type of Modification

Expressiveness of View
Definition Language

Other Views

Insertions
Deletions

Updates
Sets of each

Arithmetic

Aggregation

Duplicates

Amount of Information

Difference

Recursion

Outer−Joins

Chronicle Algebra

Conjunctive
queries

 Base
Relations

Materialized
 View

 Integrity
Constraints

Group Updates

Change view definition

Subqueries

Union

Figure �� The problem space

Paper Outline

We study the view maintenance problem with respect to the space of Figure � using the �amount
of information� as the �rst discriminator� For each point considered on the information dimension�
we consider the languages for which view maintenance algorithms have been developed� and present
selected algorithms in some detail� Where appropriate� we mention how di
erent types of modi�cations
are handled di
erently� The algorithms we describe in some detail address the following points in the
problem space�

� �Section ��� Information dimension� Use Full Information �all the underlying base relations
and the materialized view�� Instance dimension� Apply to all instances of the database and all
instances of modi�cations� Modi�cation dimension� Apply to all types of modi�cations� Language
dimension� Consider the following languages �

� SQL views with duplicates� UNION� negation� and aggregation �e�g� SUM� MIN��

� Outer�join views�

� Recursive Datalog or SQL views with UNION� strati�ed aggregation and negation� but no
duplicates�

� �Section ��� Information dimension� Use partial information �materialized view and key con�
straints � views that can be maintained without accessing the base relations are said to be
self�maintainable�� Instance dimension� Apply to all instances of the database and all instances
of modi�cations� Language dimension� Apply to SPJ views� Modi�cation dimension� Consider
the following types of modi�cations �

� Insertions and Deletions of tuples�

� Updates and group updates to tuples�

We also discuss maintaining SPJ views using the view and some underlying base relations�

	

� The Idea Behind View Maintenance

Incremental maintenance requires that the change to the base relations be used to compute the change
to the view� Thus� most view maintenance techniques treat the view de�nition as a mathematical
formula and apply a di
erentiation step to obtain an expression for the change in the view� We
illustrate through an example�

Example �� �Intuition� Consider the base relation link�S�D� such that link�a� b� is true if there is
a link from source node a to destination b� De�ne view hop such that hop�c� d� is true if c is connected
to d using two links� via an intermediate node�

D � hop�X� Y � � �X�Y �link�X� V � �V�W link�W�Y ��

Let a set of tuples ��link� be inserted into relation link� The corresponding insertions ��hop�
that need to be made into view hop can be computed by mathematically di
erentiating de�nition D
to obtain the following expression�

��hop� � �X�Y ����link��X� V � �V�W link�W�Y �� �
�link�X� V � �V�W ��link��W�Y �� �
���link��X� V � �V�W ��link��W�Y ���

The second and third terms can be combined to yield the term link��X� V � �V�W ��link��W�Y �
where link� represents relation link with the insertions� i�e�� link ���link��

In the above example� if tuples are deleted from link then too the same expression computes
the deletions from view hop� If tuples are inserted into and deleted from relation link� then ��hop�
is often computed by separately computing the set of deletions ���hop� and the set of insertions
���hop� �QW��� HD���� Alternatively� by di
erently tagging insertions and deletions they can be
handled in one pass as in �GMS����

� Using Full Information

Most work on view maintenance has assumed that all the base relations and the materialized view are
available during the maintenance process� and the focus has been on e
cient techniques to maintain
views expressed in di
erent languages � starting from select�project�join views and moving to relational
algebra� SQL� and Datalog� considering features like aggregations� duplicates� recursion� and outer�
joins� The techniques typically di
er in the expressiveness of the view de�nition language� in their
use of key and integrity constraints� and whether they handle insertions and deletions separately or
in one pass �Updates are modeled as a deletion followed by an insertion�� The techniques all work
on all database instances for both insertions and deletions� We will classify these techniques broadly
along the language dimension into those applicable to nonrecursive views� those applicable to outer�join
views� and those applicable to recursive views�

��� Nonrecursive Views

We describe the counting algorithm for view maintenance� and then discuss several other view mainte�
nance techniques that have been proposed in the literature�

The counting Algorithm �GMS	�
� applies to SQL views that may or may not have duplicates� and
that may be de�ned using UNION� negation� and aggregation� The basic idea in the counting algorithm
is to keep a count of the number of derivations for each view tuple as extra information in the view�
We illustrate the counting algorithm using an example�

Example �� Consider view hop from Example � now written in SQL�

CREATE VIEW hop�S�D� as
�select distinct l��S� l��D from link l�� link l� where l��D � l��S�

Given link � f�a� b�� �b� c�� �b� e�� �a� d�� �d� c�g� the view hop evaluates to f�a� c�� �a� e�g� The tuple
hop�a� e� has a unique derivation� hop�a� c� on the other hand has two derivations� If the view had
duplicate semantics �did not have the distinct operator� then hop�a� e� would have a count of � and
hop�a� c� would have a count of �� The counting algorithm pretends that the view has duplicate
semantics� and stores these counts�

Suppose the tuple link�a� b� is deleted� Then we can see that hop can be recomputed as f�a� c�g�
The counting algorithm infers that one derivation of each of the tuples hop�a� c� and hop�a� e� is deleted�
The algorithm uses the stored counts to infer that hop�a� c� has one remaining derivation and therefore
only deletes hop�a� e�� which has no remaining derivation�

The counting algorithm thus works by storing the number of alternative derivations� count�t�� of each
tuple t in the materialized view� This number is derived from the multiplicity of tuple t under duplicate
semantics �Mum��� MS���� Given a program T de�ning a set of views V�� � � � � Vk� the counting algorithm
uses the di
erentiation technique of Section � to derive a program T�� The program T� uses the changes
made to base relations and the old values of the base and view relations to produce as output the set
of changes� ��V��� � � � ���Vk�� that need to be made to the view relations� In the set of changes�
insertions are represented with positive counts� and deletions by negative counts� The count value for
each tuple is stored in the materialized view� and the new materialized view is obtained by combining
the changes ��V��� � � � ���Vk� with the stored views V�� � � � � Vk� Positive counts are added in� and
negative counts are subtracted� A tuple with a count of zero is deleted� The count algorithm is optimal
in that it computes exactly those view tuples that are inserted or deleted� For SQL views counts

can be computed at little or no cost above the cost of evaluating the view for both set and duplicate
semantics� The counting algorithm works for both set and duplicate semantics� and can be made to
work for outer�join views �Section �����

Other Counting Algorithms� �SI��� maintain select� project� and equijoin views using counts of
the number of derivations of a tuple� They build data structures with pointers from a tuple � to other
tuples derived using the tuple � � �BLT�	� use counts just like the counting algorithm� but only to
maintain SPJ views� Also� they compute insertions and deletions separately� without combining them
into a single set with positive and negative counts� �Rou��� describes �ViewCaches�� materialized views
de�ned using selections and one join� that store only the TIDs of the tuples that join to produce view
tuples�

Algebraic Di�erencing� introduced in �Pai��� and used subsequently in �QW��� for view mainte�
nance di
erentiates algebraic expressions to derive the relational expression that computes the change
to an SPJ view without doing redundant computation� �GLT��� provide a correction to the minimal�
ity result of �QW���� and �GL��� extend the algebraic di
erencing approach to multiset algebra with
aggregations and multiset di
erence� They derive two expressions for each view� one to compute the
insertions into the view� and another to compute the deletions into the view�

�

The Ceri
Widom algorithm �CW	�
� derives production rules to maintain selected SQL views �
those without duplicates� aggregation� and negation� and those where the view attributes functionally
determine the key of the base relation that is updated� The algorithm determines the SQL query
needed to maintain the view� and invokes the query from within a production rule�

Recursive Algorithms� The algorithms described in Section ��� for recursive views also apply to
nonrecursive views�

��� Outer�Join Views

Outer joins are important in domains like data integration and extended relational systems �MPP�����
View maintenance on outer�join views using the materialized view and all base relations has been
discussed in �GJM����

In this section we outline the algorithm of �GJM��� to maintain incrementally full outer�join views�
We use the following SQL syntax to de�ne a view V as a full outer�join of relations R and S�

CREATE view V as select X�� � � � � Xn from R full outer join S on g�Y�� � � � � Ym�

where X�� � � � � Xn and Y�� � � � � Ym are lists of attributes from relations R and S� g�Y�� � � � � Ym� is a
conjunction of predicates that represent the outer�join condition� The set of modi�cations to relation
R is denoted as ��R�� which consists of insertions ���R� and deletions ���R�� Similarly� the set of
modi�cations to relation S is denoted as ��S�� The view maintenance algorithm rewrites the view
de�nition to obtain the following two queries to compute ��V ��

�a�� select X�� � � � � Xn �b�� select X�� � � � � Xn

from ��R� left outer join S from R� right outer join ��S�
on g�Y�� � � � � Ym� on g�Y�� � � � � Ym��

R� represents relation R after modi�cation� All other references in queries �a� and �b� refer either to
the pre�modi�ed extents or to the modi�cations themselves� Unlike with SPJ views queries �a� and �b�
do not compute the entire change to the view� as explained below�

Query �a� computes the e
ect on V of changes to relation R� Consider a tuple r� inserted into
R and its e
ect on the view� If r� does not join with any tuple in s� then r��NULL �r� padded with
nulls� has to be inserted into view V � If instead� r� does join with some tuple s in S� then r��s �r�

joined with tuple s� is inserted into the view� Both these consequences are captured in Query �a� by
using the left�outer�join� However� query �a� does not compute a possible side e
ect if r� does join
with some tuple s� The tuple NULL�s �s padded with nulls� may have to be deleted from the view V if
NULL�s is in the view� This will be the case if previously tuple s did not join with any tuple in R�

Similarly� a deletion r� from R not only removes a tuple from the view� as captured by Query �a��
but may also precipitate the insertion of a tuple NULL�s if before deletion r� is the only tuple that
joined with s� Query �b� handles the modi�cations to table S similar to the manner in which query �a�
handles the modi�cations to table R� with similar possible side�e
ects� The algorithm of �GJM���
handles these side e
ects�

��� Recursive Views

Recursive queries or views often are expressed using rules in Datalog �Ull���� and all the work on
maintaining recursive views has been done in the context of Datalog� We describe the DRed �Deletion
and Rederivation� algorithm for view maintenance� and then discuss several other recursive view
maintenance techniques that have been proposed in the literature�

�

The DRed Algorithm �GMS	�
� applies to Datalog or SQL views� including views de�ned using
recursion� UNION� and strati�ed negation and aggregation� However� SQL views with duplicate seman�
tics cannot be maintained by this algorithm� The DRed algorithm computes changes to the view
relations in three steps� First� the algorithm computes an overestimate of the deleted derived tuples�
a tuple t is in this overestimate if the changes made to the base relations invalidate any derivation
of t� Second� this overestimate is pruned by removing �from the overestimate� those tuples that have
alternative derivations in the new database� A version of the original view restricted to compute only
the tuples in the overestimated set is used to do the pruning� Finally� the new tuples that need to be
inserted are computed using the partially updated materialized view and the insertions made to the
base relations� The algorithm can also maintain materialized views incrementally when rules de�ning
derived relations are inserted or deleted� We illustrate the DRed algorithm using an example�

Example �� Consider the view hop de�ned in Example �� The DRed algorithm �rst deletes tuples
hop�a� c� and hop�a� e� since they both depend upon the deleted tuple� The DRed algorithm then looks
for alternative derivations for each of the deleted tuples� hop�a� c� is rederived and reinserted into the
materialized view in the second step� The third step of the DRed algorithm is empty since no tuples
are inserted into the link table�

None of the other algorithms discussed in this section handle the same class of views as the DRed

algorithm� the most notable di
erentiating feature being aggregations� However� some algorithms
derive more e
cient solutions for special subclasses�

The PF �Propagation�Filtration� algorithm �HD	�
� is very similar to the DRed algorithm�
except that it propagates the changes made to the base relations on a relation by relation basis�
It computes changes in one derived relation due to changes in one base relation� looping over all
derived and base relations to complete the view maintenance� In each loop� an algorithm similar to
the delete�prune�insert steps in DRed is executed� However� rather than running the deletion step to
completion before starting the pruning step� the deletion and the pruning steps are alternated after
each iteration of the semi�naive evaluation� Thus� in each semi�naive iteration� an overestimate for
deletions is computed and then pruned� This allows the PF algorithm to avoid propagating some
tuples that occur in the over estimate after the �rst iteration but do not actually change� However�
the alternation of the steps after each semi�naive iteration also causes some tuples to be rederived
several times� In addition� the PF algorithm ends up fragmenting computation and rederiving changed
and deleted tuples again and again� �GM��� presents improvements to the PF algorithm that reduce
rederivation of facts by using memoing and by exploiting the strati�cation in the program� Each of
DRed and the PF algorithms can do better than the other by a factor of n depending on the view
de�nition �where n is the number of base tuples in the database�� For nonrecursive views� the DRed

algorithm always works better than the PF algorithm�

The Kuchenho� algorithm �Kuc	�
� derives rules to compute the di
erence between consecutive
database states for a strati�ed recursive program� The rules generated are similar in spirit to those
of �GMS���� However� some of the generated rules �for the depends predicates� are not safe� and the
delete�prune�insert three step technique of �GMS��� HD��� is not used� Further� when dealing with
positive rules� the Kuchenho
 algorithm does not discard duplicate derivations that are guaranteed not
to generate any change in the view as early as the DRed algorithm discards the duplicate derivations�

The Urpi
Olive algorithm �UO	�
� for strati�ed Datalog views derives transition rules showing
how each modi�cation to a relation translates into a modi�cation to each derived relation� using
existentially quanti�ed subexpressions in Datalog rules� The quanti�ed subexpressions may go through
negation� and can be eliminated under certain conditions� Updates are modeled directly� however since
keys need to be derived for such a modeling� the update model is useful mainly for nonrecursive views�

��

Counting based algorithms can sometimes be used for recursive views� The counting algorithm
of �GKM��� can be used e
ectively only if every tuple is guaranteed to have a �nite number of
derivations�� and even then the computation of counts can signi�cantly increase the cost of com�
putation� The BDGEN system �NY��� uses counts to re!ect not all derivations but only certain types
of derivations� Their algorithm gives �nite even counts to all tuples� even those in a recursive view�
and can be used even if tuples have in�nitely many derivations�

Transitive Closures �DT��� derive nonrecursive programs to update right�linear recursive views in
response to insertions into the base relation� �DS��� give nonrecursive programs to update the transitive
closure of speci�c kinds of graphs in response to insertions and deletions� The algorithm does not apply
to all graphs or to general recursive programs� In fact� there does not exist a nonrecursive program to
maintain the transitive closure of an arbitrary graph in response to deletions from the graph �DLW����

Nontraditional Views �LMSS��a� extends the DRed algorithm to views that can have nonground
tuples� �WDSY��� give a maintenance algorithm for a rule language with negation in the head and
body of rules� using auxiliary information about the number of certain derivations of each tuple� They
do not consider aggregation� and do not discuss how to handle recursively de�ned relations that may
have an in�nite number of derivations�

	 Using Partial Information

As illustrated in the introduction� views may be maintainable using only a subset of the underlying
relations involved in the view� We refer to this information as partial information� Unlike view main�
tenance using full information� a view is not always maintainable for a modi�cation using only partial
information� Whether the view can be maintained may also depend upon whether the modi�cation
is an insertion� deletion� or update� So the algorithms focus on checking whether the view can be
maintained� and then on how to maintain the view�

We will show that treating updates as a distinct type of modi�cation lets us derive view maintenance
algorithms for updates where no algorithms exist for deletions"insertions�

��� Using no Information� Query Independent of Update

There is a lot of work on optimizing view maintenance by determining when a modi�cation leaves a
view unchanged �BLT�	� BCL��� Elk��� LS���� This is known as the �query independent of update�� or
the �irrelevant update� problem� All these algorithms provide checks to determine whether a particular
modi�cation will be irrelevant� If the test succeeds� then the view stays una
ected by the modi�cation�
However� if the test fails� then some other algorithm has to be used for maintenance�

�BLT�	� BCL��� determine irrelevant updates for SPJ views while �Elk��� considers irrelevant up�
dates for Datalog� Further� �LS��� can determine irrelevant updates for Datalog with negated base
relations and arithmetic inequalities�

��� Using the Materialized View� Self�Maintenance

Views that can be maintained using only the materialized view and key constraints are called self�
maintainable views in �GJM���� Several results on self�maintainability of SPJ and outer�join views in
response to insertions� deletions� and updates are also presented in �GJM���� Following �GJM���� we
de�ne�

�An algorithm to check �niteness appears in �MS��� MS����

��

De�nition �� �Self Maintainability With Respect to a Modi�cation Type� A view V is said
to be self�maintainable with respect to a modi�cation type �insertion� deletion� or update� to a base
relation R if for all database states� the view can be self�maintained in response to all instances of a
modi�cation of the indicated type to the base relation R�

Example �� Consider view supp parts from Example � that contains all distinct part no supplied
by at least one supplier� Also� let part no be the key for relation part �so there can be at most one
contract and one part cost for a given part��

If a tuple is deleted from relation part then it is straightforward to update the view using only
the materialized view �simply delete the corresponding part no if it is present�� Thus� the view is
self�maintainable with respect to deletions from the part relation�

By contrast� let tuple supp�s�� p�� ���� be deleted when the view contains tuple p�� The tuple
p� cannot be deleted from the view because supp may also contain a tuple supp�s�� p�� ���� that
contributes p� to the view� Thus� the view is not self�maintainable with respect to deletions from supp�
In fact� the view is not self�maintainable for insertions into either supp or part�

Some results from �GJM��� are stated after the following de�nitions�

De�nition �� �Distinguished Attribute� An attribute A of a relation R is said to be distinguished
in a view V if attribute A appears in the select clause de�ning view V �

De�nition �� �Exposed Attribute� An attribute A of a relation R is said to be exposed in a view
V if A is used in a predicate� An attribute that is not exposed is referred to as being non�exposed�

Self
Maintainability With Respect to Insertions and Deletions �GJM��� shows that most
SPJ views are not self�maintainable with respect to insertions� but they are often self�maintainable
with respect to deletions and updates� For example�

� An SPJ view that takes the join of two or more distinct relations is not self�maintainable with
respect to insertions�

� An SPJ view is self�maintainable with respect to deletions to R� if the key attributes from each
occurrence of R� in the join are either included in the view� or are equated to a constant in the
view de�nition�

� A left or full outer�join view V de�ned using two relations R and S� such that�

� The keys of R and S are distinguished� and

� All exposed attributes of R are distinguished�

is self�maintainable with respect to all types of modi�cations to relation S�

Self
Maintainability With Respect to Updates By modeling an update independently and not
as a deletion"insertion we retain information about the deleted tuple that allows the insertion to be
handled more easily�

Example �� Consider again relation part�part no� part cost� contract� where part no is the key�
Consider an extension of view supp parts�

supp parts�supp no� part no� part cost� � �part no�supp �part no part�

��

The view contains the part no and part cost for the parts supplied by each supplier� If the part cost

of a part p� is updated then the view is updated by identifying the tuples in the view that have
part no � p� and updating their part cost attribute�

The ability to self�maintain a view depends upon the attributes being updated� In particular�
updates to non�exposed attributes are self�maintainable when the key attributes are distinguished� The
complete algorithm for self�maintenance of a view in response to updates to non�exposed attributes is
described in �GJM��� and relies on �a� identifying the tuples in the current view that are potentially
a
ected by the update� and �b� computing the e
ect of the update on these tuples�

The idea of self�maintenance is not new� Autonomously computable views were de�ned by �BCL���
as the views that can be maintained using only the materialized view for all database instances� but
for a given modi�cation instance � They characterize a subset of SPJ views that are autonomously
computable for insertions� deletions� and updates� where the deletions and updates are speci�ed using
conditions� They do not consider views with self�joins or outer�joins� do not use key information� and
they do not consider self�maintenance with respect to all instances of modi�cations� The characteriza�
tion of autonomously computable views in �BCL��� for updates is inaccurate � For instance� �BCL���
determines� incorrectly� that the view �select X from r�X�� is not autonomously computable for the
modi�cation �Update�R��� to R������

Instance Speci�c Self
Maintenance For insertions and deletions only� a database instance speci�c
self�maintenance algorithm for SPJ views was discussed �rst in �BT���� Subsequently this algorithm
has been corrected and extended in �GB����

��� Using Materialized View and Some Base Relations� Partial�reference

The partial�reference maintenance problem is to maintain a view given only a subset of the base relations
and the materialized view� Two interesting subproblems here are when the view and all the relations
except the modi�ed relation are available� and when the view and modi�ed relation are available�

Modi�ed Relation is not Available �Chronicle Views� A chronicle is an ordered sequence of
tuples with insertion being the only permissible modi�cation �JMS���� A view over a chronicle� treating
the chronicle as a relation� is called a chronicle view� The chronicle may not be stored in its entirety
in a database because it can get very large� so the chronicle view maintenance problem is to maintain
the chronicle view in response to insertions into the chronicle� but without accessing the chronicle�
Techniques to specify and maintain such views e
ciently are presented in �JMS����

Only Modi�ed Relation is Available �Change
reference Maintainable� Sometimes a view
may be maintainable using only the modi�ed base relation and the view� but without accessing other
base relations� Di
erent modi�cations need to be treated di
erently�

Example �� Consider maintaining view supp parts using relation supp and the old view in response
to deletion of a tuple t from relation supp� If t�part no is the same as the part no of some other tuple
in supp then the view is unchanged� If no remaining tuple has the same part no as tuple t then we
can deduce that no supplier supplies t�part no and thus the part number has to be deleted from the
view� Thus� the view is change�reference�maintainable�

A similar claim holds for deletions from part but not for insertions into either relation�

Instance Speci�c Partial
reference Maintenance �GB��� Gup��� give algorithms that success�
fully maintain a view for some instances of the database and modi�cation� but not for others� Their
algorithms derive conditions to be tested against the view and�or the given relations to check if the
information is adequate to maintain the view�

��

� Applications

New and novel applications for materialized views and view maintenance techniques are emerging� We
describe a few of the novel applications here� along with a couple of traditional ones�

Fast Access� Lower CPU and Disk Load� Materialized views are likely to �nd applications in
any problem domain that needs quick access to derived data� or where recomputing the view from base
data may be expensive or infeasible� For example� consider a retailing database that stores several
terabytes of point of sale transactions representing several months of sales� and supports queries giving
the total number of items sold in each store for each item the company carries� These queries are made
several times a day� by vendors� store managers� and marketing people� By de�ning and materializing
the result� each query can be reduced to a simple lookup on the materialized view� consequently it
can be answered faster� and the CPU and disk loads on the system are reduced� View maintenance
algorithms keep the materialized result current as new sale transactions are posted�

Data Warehousing� A database that collects and stores data from several databases is often de�
scribed as a data warehouse�

Materialized views provide a framework within which to collect information into the warehouse
from several databases without copying each database in the warehouse� Queries on the warehouse can
then be answered using the materialized views without accessing the remote databases� Provisioning�
or changes� still occurs on the remote databases� and are transmitted to the warehouse as a set of
modi�cations� Incremental view maintenance techniques can be used to maintain the materialized views
in response to these modi�cations� While the materialized views are available for view maintenance�
access to the remote databases may be restricted or expensive� Self�Maintainable views are thus useful
to maintain a data warehouse �GJM���� For cases where the view is not self�maintainable and one
has to go to the remote databases� besides the cost of remote accesses� transaction management is also
needed �ZG�����

Materialized views are used for data integration in �ZHKF��� GJM���� Objects that reside in multi�
ple databases are integrated to give a larger object if the child objects �match�� Matching for relational
tuples using outer�joins and a match operator is done in �GJM���� while more general matching condi�
tions are discussed in �ZHKF���� The matching conditions of �ZHKF��� may be expensive to compute�
By materializing the composed objects� in part or fully� the objects can be used inexpensivelym�

�LMSS��b� presents another model of data integration� They consider views de�ned using some
remote and some local relations� They materialize the view partially� without accessing the remote
relation� by retaining a reference to the remote relation as a constraint in the view tuples� The model
needs access to the remote databases during queries and thus di
ers from a typical warehousing model�

Chronicle Systems� Banking� retailing� and billing systems deal with a continuous stream of trans�
actional data� This ordered sequence of transactional tuples has been called a chronicle �JMS���� One
characteristic of a chronicle is that it can get very large� and it can be beyond the capacity of any
database system to even store� far less access� for answering queries� Materialized views provide a way
to answer queries over the chronicle without accessing the chronicle�

Materialized views can be de�ned to compute and store summaries of interest over the chroni�
cles �the balance for each customer in a banking system� or the pro�ts of each store in the retailing
system�� View maintenance techniques are needed to maintain these summaries as new transactions
are added to the chronicle� but without accessing the old entries in the chronicle �JMS����

Data Visualization� Visualization applications display views over the data in a database� As the
user changes the view de�nition� the display has to be updated accordingly� An interface for such
queries in a real estate system is reported in �WS���� where they are called dynamic queries� Data

��

archaeology �BST���� is a similar application where an archaeologist discovers rules about data by
formulating queries� examining the results� and then changing the query iteratively as his�her under�
standing improves� By materializing a view and incrementally recomputing it as its de�nition changes�
the system keeps such applications interactive� �GMR��� studies the �view adaptation problem�� i�e��
how to incrementally recompute a materialized view in response to changes to the view de�nition�

Mobile Systems� A common query in a personal digital assistant �PDA� is of the form �Which
freeway exits are within a � mile radius�� One model of computation sends the query to a remote
server that uses the position of the PDA to answer the query and sends the result back to the PDA�
When the PDA moves and asks the same query� data transmission can be reduced by computing only
the change to the answer and designing the PDA to handle answer di
erentials�

Integrity Constraint Checking� Most static integrity constraints can be represented as a set of
views such that if any of the views is nonempty then the corresponding constraint is violated� Then
checking constraints translates to a view maintenance problem� Thus� view maintenance techniques
can be used to incrementally check integrity constraints when a database is modi�ed� The expression to
check integrity constraints typically can be simpli�ed when the constraint holds before the modi�cation�
i�e�� the corresponding views initially are empty �BC �� Nic��� BB��� BMM��� LST� � CW����

Query Optimization� If a database system maintains several materialized views� the query opti�
mizer can use these materialized views when optimizing arbitrary queries� even when the queries do
not mention the views� For instance� consider a query in a retailing system that wants to compute the
number of items sold for each item� A query optimizer can optimize this query to access a materialized
view that stores the number of items sold for each item and store� and avoid access to a much larger
sales�transactions table�

�RSU��� LMSS��a� discuss the problem of answering a conjunctive query �SPJ query� given a set of
conjunctive view de�nitions� Optimization of aggregation queries using materialized views is discussed
in �CKPS��� DJLS��� GHQ���� The view adaptation results of �GMR��� can be used to optimize a
query using only one materialized view�

 Open Problems

This section describes some open problems in view maintenance� in the context of Figure �� Many points
on each of the three dimensions remain unconsidered� or even unrepresented� It is useful to extend
each dimension to unconsidered points and to develop algorithms that cover entirely the resulting space
because each point in the space corresponds to a scenario of potential interest�

View maintenance techniques that use all the underlying relations� i�e� full�information� have been
studied in great detail for large classes of query languages� We emphasize the importance of develop�
ing comprehensive view maintenance techniques that use di
erent types of partial information� For
instance�

� Use information on functional dependencies� multiple materialized views� general integrity con�
straints� horizontal�vertical fragments of base relations �i�e�� simple views��

� Extend the view de�nition language to include aggregation� negation� outer�join for all instances
of the other dimensions� The extensions are especially important for using partial information�

� Identify subclasses of SQL views that are maintainable in an instance independent fashion�

The converse of the view maintenance problem under partial information� as presented in Section �
is to identify the information required for e
cient view maintenance of a given view �or a set of

��

views�� We refer to this problem as the �information identi�cation �II�� problem� Solutions for view
maintenance with partial information indirectly apply to the II problem by checking if the given view
falls into one of the classes for which partial�information based techniques exist� However� direct and
more complete techniques for solving the II problem are needed�

An important problem is to implement and incorporate views in a database system� Many questions
arise in this context� When are materialized views maintained � before the transaction that updates the
base relation commits� or after the transaction commits� Is view maintenance a part of the transaction
or not� Should the view be maintained before the update is applied to the base relations� or afterwards�
Should the view be maintained after each update within the transaction� or after all the updates�
Should active rules �or some other mechanism� be used to initiate view maintenance automatically or
should a user start the process� Should alternative algorithms be tried� based on a cost based model to
choose between the options� Some existing work in this context is in �NY��� CW��� GHJ��� RC�����
�CW��� considers using production rules for doing view maintenance and �NY��� presents algorithms in
the context of a deductive DB system� �GHJ��� does not discuss view maintenance but discusses e
cient
implementation of deltas in a system that can be used to implement materialized views� �RC����
describes the ADMS system that implements and maintains simple materialized views� �ViewCaches��
in a multi�database environment� The ADMS system uses materialized views in query optimization
and addresses questions of caching� bu
ering� access paths� etc��

The complexity of view maintenance also needs to be explored� The dynamic complexity classes
of �PI��� and the incremental maintenance complexity of �JMS��� characterize the computational com�
plexity of maintaining a materialized copy of the view� �PI��� show that several recursive views have a
�rst order dynamic complexity� while �JMS��� de�ne languages with constant� logarithmic� and poly�
nomial incremental maintenance complexity�

Acknowledgements

We thank H� V� Jagadish� Leonid Libkin� Dallan Quass� and Jennifer Widom for their insightful
comments on the technical and presentation aspects of this paper�

References

�BB��� P� A� Bernstein and B� T� Blaustein� Fast Methods for Testing Quanti�ed Relational Calculus Asser�
tions� In SIGMOD ����� pages �	
���

�BBC��� P� A� Bernstein� B� T� Blaustein� and E� M� Clarke� Fast Maintenance of Semantic Integrity Assertions
Using Redundant Aggregate Data� In �th VLDB� ����� pages
��

���

�BC�	� Peter O� Buneman and Eric K� Clemons� E�ciently Monitoring Relational Databases� In ACM
Transactions on Database Systems� Vol �� No� ��
	�	� ��������

�BCL�	� J� A� Blakeley� N� Coburn� and P� Larson� Updating Derived Relations� Detecting Irrelevant and
Autonomously Computable Updates� ACM Transactions on Database Systems�
�������	
����
	�	�

�BLT��� J� A� Blakeley� P� Larson� and F� Tompa� E�ciently Updating Materialized Views� In SIGMOD �����

�BMM	�� F� Bry� R� Manthey� and B� Martens� Integrity Veri�cation in Knowledge Bases� In Logic Program�
ming� LNAI 	��� pages

�

�	�
		��

�BST�	�� R� J� Brachman� et al�� Integrated support for data archaeology� In International Journal of Intelligent
and Cooperative Information Systems� ��
�	

���
		��

�BT��� J� A� Blakeley and F� W� Tompa� Maintaining Materialized Views without Accessing Base Data� In
Information Systems�
������	�
����
	���

�	

�CKPS	�� S� Chaudhuri� R� Krishnamurthy� S� Potamianos� K� Shim� Query Optimization in the presence of
Materialized Views� In ��th IEEE Intl
 Conference on Data Engineering�
		��

�CW	�� S� Ceri and J� Widom� Deriving Production Rules for Constraint Maintenance� In VLDB
		��

�CW	
� S� Ceri and J� Widom� Deriving Production Rules for Incremental View Maintenance� In VLDB
		
�

�DJLS	�� S� Dar� H�V� Jagadish� A� Y� Levy� and D� Srivastava� Answering SQL queries with aggregation using
views� Technical report� AT�T�
		��

�DLW	�� G� Dong� L� Libkin and L� Wong� On Impossibility of Decremental Recomputation of Recursive
Queries in Relational Calculus and SQL� In Proc
 of the Intl
 Wksp
 on DB Prog
 Lang�
		��

�DS	�� G� Dong and J� Su� Incremental and Decremental Evaluation of Transitive Closure by First�Order
Queries� In Proceedings of the
�th Australian Computer Science Conference�
		��

�DT	�� G� Dong and R� Topor� Incremental Evaluation of Datalog Queries� In ICDT�
		��

�Elk	�� C� Elkan� Independence of Logic Database Queries and Updates� In �th PODS� pages
��

���
		��

�GHJ	�� S� Ghandeharizadeh� R� Hull� and D Jacobs� Heraclitus�Alg�C�� Elevating Deltas to be First�Class
Citizens in a Database Programming Language� Tech� Rep� � USC�CS�	����
� USC�
		��

�GB	�� A� Gupta and J� A� Blakeley� Maintaining Views using Materialized Views � Unpublished document�

�GHQ	�� A� Gupta� V� Harinarayan and D� Quass� Generalized Projections� A Powerful Approach to Aggre�
gation� In VLDB�
		��

�GJM	�� A� Gupta� H� V� Jagadish� and I� S� Mumick� Data integration using self�maintainable views� Technical
Memorandum

�����	�

�
���� AT�T Bell Laboratories� November
		��

�GKM	�� A� Gupta� D� Katiyar� and I� S� Mumick� Counting Solutions to the View Maintenance Problem� In
Workshop on Deductive Databases� JICSLP�
		��

�GL	�� T� Gri�n and L� Libkin� Incremental maintenance of views with duplicates� In SIGMOD ���	�

�GLT	�� T� Gri�n and L� Libkin and H� Trickey� A correction to �Incremental recomputation of active
relational expressions� by Qian and Wiederhold� To appear in IEEE TKDE�

�GM	�� A� Gupta and I� S� Mumick� Improvements to the PF Algorithm� TR STAN�CS�	��
���� Stanford�

�GMR	�� A� Gupta� I� Singh Mumick� and K� A� Ross� Adapting materialized views after rede�nitions� In
Columbia University TR CUCS������	� March
		�� Also in SIGMOD ���	� pages �

�����

�GMS	�� A� Gupta� I� S� Mumick� and V� S� Subrahmanian� Maintaining Views Incrementally� In SIGMOD
����� pages
��

��� �Full version in AT�T technical report � 		�
�
��
	�TM��

�GSUW	�� A� Gupta� S� Sagiv� J� D� Ullman� and J� Widom� Constraint Checking with Partial Information� In
��th PODS�
		�� pages ������

�Gup	�� A� Gupta� Partial Information Based Integrity Constraint Checking� Ph�D� Thesis� Stanford �CS�
TR�	��
�����

�HD	�� J� V� Harrison and S� Dietrich� Maintenance of Materialized Views in a Deductive Database� An
Update Propagation Approach� In Workshop on Deductive Databases� JICSLP�
		��

�JMS	�� H� V� Jagadish� I� S� Mumick� and A� Silberschatz� View maintenance issues in the chronicle data
model� In ��th PODS� pages

�

���
		��

�KSS��� R� Kowalski� F� Sadri� and P� Soper� Integrity Checking in Deductive Databases� In VLDB�
	���

�Kuc	
� V� Kuchenho�� On the E�cient Computation of the Di�erence Between Consecutive Database States�
In DOOD� LNCS 	���
		
�

�

�LMSS	�a� A� Y� Levy and A� O� Mendelzon and Y� Sagiv and D� Srivastava� Answering Queries Using Views�
In PODS
		�� pages 	��
���

�LMSS	�b� J� Lu� G� Moerkotte� J� Schu� and V� S� Subrahmanian� E�cient maintenance of materialized
mediated views� In SIGMOD ���	� pages ���
��
�

�LS	�� A�Y� Levy and Y� Sagiv� Queries Independent of Updates� In ��th VLDB� pages
�

�
�
		��

�LST��� J�W� Lloyd� E� A� Sonenberg� and R�W� Topor� Integrity Constraint Checking in Strati�ed Databases�
Journal of Logic Programming� �������

����
	���

�MPP�	�� B� Mitschang� H� Pirahesh� P� Pistor� B� Lindsay� and N� Sudkamp� SQL�XNF � Processing Composite
Objects as Abstractions over Relational Data� In Proc
 of 	th IEEE ICDE�
		��

�MS	�� I� S� Mumick and O� Shmueli� Finiteness properties of database queries� In Advances in Database
Research
 Proc
 of the �th Australian Database Conference� pages ���
����
		��

�MS	�� I� S� Mumick and O� Shmueli� Universal Finiteness and Satis�ability� In PODS ����� pages
	������

�Mum	
� I� S� Mumick� Query Optimization in Deductive and Relational Databases� Ph�D� Thesis� Stanford
University� Stanford� CA 	����� USA�
		
�

�Nic��� J� M� Nicolas� Logic for Improving Integrity Checking in Relational Data Bases� Acta Informatica�

��������
����
	���

�NY��� J� M� Nicolas and Yazdanian� An Outline of BDGEN� A Deductive DBMS� In Information Processing�
pages ���
�
��
	���

�Pai��� R� Paige� Applications of �nite di�erencing to database integrity control and query�transaction
optimization� In Advances in Database Theory� pages
��
��	� Plenum Press� New York�
	���

�PI	�� S� Patnaik and N� Immerman� Dyn�fo� A parallel� dynamic complexity class� In PODS�
		��

�QW	
� X� Qian and G� Wiederhold� Incremental Recomputation of Active Relational Expressions� In IEEE
TKDE� ��
		
�� pages ������
�

�RSU	�� A� Rajaraman� Y� Sagiv� and J� D� Ullman� Answering queries using templates with binding patterns�
In PODS�
		�� pages
��

��

�RC�	�� N� Roussopoulos� C� Chun� S� Kelley� A� Delis� and Y� Papakonstantinou� The ADMS Project�
Views �R� Us� In IEEE Data Engineering Bulletin� Special Issue on Materialized Views and Data
Warehousing�
����� June
		��

�Rou	
� N� Roussopoulos� The Incremental Access Method of View Cache� Concept� Algorithms� and Cost
Analysis� In ACM�TODS�
�������������
		
�

�SI��� O� Shmueli and A� Itai� Maintenance of Views� In SIGMOD ����� pages ���
����

�Ull�	� J� D� Ullman� Principles of Database and Knowledge�Base Systems� Vol �� Computer Science Press�

�UO	�� T� Urpi and A� Olive� A Method for Change Computation in Deductive Databases� In VLDB
		��

�WDSY	
� O� Wolfson� H� M� Dewan� S� J� Stolfo� and Y� Yemini� Incremental Evaluation of Rules and its
Relationship to Parallelism� In SIGMOD ����� pages ��
���

�WS	�� C� Williamson and B� Shneiderman� The Dynamic HomeFinder� evaluating Dynamic Queries in a
real� estate information exploration system� In Ben Shneiderman� editor� Sparks of Innovation in
Human�Computer Interaction� Ablex Publishing Corp�
		��

�ZHKF	�� G� Zhou� R� Hull� R� King� J�C� Franchitti� Using Object Matching and Materialization to Integrate
Heterogeneous Databases� In Proc
 of �rd Intl
 Conf
 on Cooperative Info
 Sys
�
		�� pp� �

��

�ZG�	�� Y� Zhuge� H� Garcia�Molina� J� Hammer� and J� Widom� View maintenance in a warehousing envi�
ronment� In SIGMOD ���	� pages �
�
����

��

The ADMS Project� Views � R� Us y

Nick Roussopoulos Chungmin M� Chen Stephen Kelley

Department of Computer Science

University of Maryland
College Park� MD �����

fnick�ming�cs	umd	edu� skelley�umiacs	umd	edu

Alex Delis Yannis Papakonstantinou

Department of Information Systems
Queensland University of Technology

Brisbane� Australia
ad�icis	qut	edu	au

Stanford University
Department of Computer Science

Stanford� CA ��
��
yannis�DB	Stanford	EDU

Abstract

The goal of the ADMS project is to create a framework for caching materialized views� access
paths� and experience obtained during query execution� The rationale behind this project is to
amortize database access cost over an extended time period and adapt execution strategies based
on experience� ADMS demonstrates the versatility of the views and their role in performance�
data warehousing� management and control of data distribution and replication�

� Introduction and Motivation for ADMS

The main goal of the Adaptive Database Management System �ADMS� project is to capitalize on the
reuse of retrieved data and data paths in order reduce execution time of follow�up queries� From
its inception� ADMS is trying to satisfy a need that has been neglected� that is� learning to perform
better with experience obtained by query execution� Although database management systems use
sophisticated query optimization techniques and access methods� they neither gather nor retain any
experience from query execution and�or obtained results� For example� the cost of an execution plan
generated by the optimizer is not compared to the actual cost incurred during the execution in order
to adapt strategies during follow�up plans� Similarly� data retrieved during query execution has a very
short life span in the bu
er area of the database systems and is not retained on disk for future use�
ADMS#s goals include capturing knowledge that a
ects query optimization� such as attribute value
distributions� selectivities� and page faults� and creating a framework for caching materialized views�
access paths� and amortizing their maintenance cost�

Query execution cost can be reduced by reusing intermediate and�or �nal query results cached in
Materialized View Fragments �MVFs�� These MVFs can then be accessed e
ciently at only a fraction

yThis research was partially sponsored by the National Science Foundation under grants IRI��	
�
�� and GDR��
�
		
	�� by NASA�USRA under contracts

�	� and NAG
������ by ARPA under contract 		�
�
� by the Institute of
Systems Research� and by the University of Maryland Institute for Advanced Computer Studies �UMIACS��

��

of the cost of their initial generation� Access paths can also be cached in the form of ViewCache
pointers �Rou��� which are trail markers captured during the execution of queries� They point to base
relation tuples and�or to lower level ViewCache entries satisfying a query and may be used by the
system during subsequent queries to walk through the same data paths without search�

Subsumption is a common technique for discovering useful MVFs and ViewCaches which contain
�subsume� the results of a given query� Such a facility is necessary in any large data warehouse in which
the catalog cannot be manually browsed� Subsumption goes hand�in�hand with validation techniques
such as cache coherence �FCL��� and relevant update �BLT�	�� These are techniques for deciding
whether or not cached data is a
ected by updates� However� since these techniques were developed for
short�lived caches� they are of rather limited value for the long term disk caching of a warehouse� To
remedy this� ADMS uses incremental access methods �RES��� for propagating updates to the MVFs
and ViewCaches and� thus� prolongs their useful life span� The ADMS optimizer �CR��b� uses a
subsumption algorithm for discovering applicable MVFs and ViewCaches� incremental access methods
for updating MVFs and ViewCaches �Rou���� and an amortized cost model in evaluating alternative
execution plans�

The adaptive functionality of ADMS captures not only access paths� intermediate and �nal results�
but also the experience obtained during their use in query execution� The ADMS bu
er manager
observes page faults during execution of queries and builds a �page fault characteristic curve� which
predicts page faults under di
erent bu
er availability situations �CR���� These predictions are then
used by the system for selecting global bu
er allocation strategies� Similarly� ADMS exploits knowledge
captured inside MVFs and ViewCaches� The selectivity of operators and cardinality of predicates are
harvested during the creation� use� and update of ViewCaches and MVFs� and are fed back to an
�adaptive curve��tting� module which obtains accurate attribute value distributions with minimal
overhead �CR��a��

This philosophy of caching query results has been extended in the ADMS� Enhanced Client�
Server database architecture �RK�	b� RK�	a� RD��� RES��� DR��� DR���� MVFs are dynamically
downloaded from multiple heterogeneous �commercial� server DBMSs to clients running ADMS�� a
single user client version of ADMS� ADMS� creates its own data warehouse by caching downloaded
results in replicas� incorporating them in locally processed queries� and making incremental update
requests from the servers holding their primary copies� ADMS� allows the user to create composite
views frommultiple heterogeneous DBMSs and enables him to integrate them with local and proprietary
data� An extension of the ADMS subsumption algorithm is to �nd a �best �t� set of MVFs residing
on multiple clients for answering a given query� In this technique� the cost is a
ected by the number
of fragments used and the negation predicates which preclude duplicates from the �nal result �Pap����

In this paper� we outline the motivation� rationale� concepts� techniques� and the implementation
of the University of Maryland ADMS prototype� Section � of this paper describes the view engine of
ADMS� Section � outlines the ADMS optimizer� Section � describes the distributed ADMS� Client�
Server architecture and the management of replicas� Section � contains concluding remarks� a brief
historical account of ADMS� and current developments�

� The ADMS View Engine

ADMS uses traditional relational storage organization and standard access methods including sequen�
tial scan� B�trees� R�trees and hashing� The ADMS catalogs store names� locations� cardinalities�
selectivities� etc� for all databases connected to the warehouse� relations in them� attributes� and in�
dexes� They are the core resource for ADMS query validation and optimization� and are maintained
in base relations so they can be queried through ADMS#s standard SQL interface� The two novel

��

extensions of the core ADMS system are its ViewCache storage organization and its adaptive bu
er
manager�

��� The ViewCache Storage and the Incremental Access Method

The ViewCache �Rou��� is the most innovative feature and has the most far reaching consequences
of any caching technique in ADMS� It is a persistent storage structure consisting of pointers to data
objects which are either base relation tuples or pointers in lower level ViewCaches�

The ViewCache storage structure and its incremental access methods are built around a single
relational operator we call SelJoin� SelJoin corresponds to a join with concurrent selections on its ar�
guments� The outer relation can be empty in which case a SelJoin reduces to a simple selection� Three
join methods have been implemented for SelJoin� nested loop� index� and hash join� Each ViewCache
corresponds directly to a single application of SelJoin and is� therefore� a �� or ��dimensional array of
pointers �TIDs� depending on the number of arguments of SelJoin� The TIDs point to records of the
underlying relations or other views necessary to make up the result of the SelJoin� A multiway join
view is then expressed as a tree of SelJoin ViewCaches with the base relations at the leaves� Every
ViewCache in the hierarchy is maintained for the life of the view and the expression which de�nes
each subtree is inserted into the catalogs so that ViewCache fragments can be reused� possibly in other
views� Since ViewCaches contain only TIDs� they are relatively small in size and can be constructed�
quickly materialized �dereferenced�� and actively maintained with little system overhead�

All other relational operators such as projection� duplicate elimination� aggregate� ordering� and
set theoretic operators are performed on the !y during output� using masking� hashing� and main
memory pointer manipulation routines� The advantages of having a single underlying operator are
manyfold� Firstly� the optimizer does not have to consider pushing selections or projections ahead of
joins or vice versa� Secondly� subsumption on SelJoin ViewCaches is more general when no attributes
have been projected out� Lastly� the incremental algorithms for SelJoin ViewCaches are simple and
require no heavy bookkeeping as opposed to incremental update algorithms for projection views or
views containing other aggregate operators which have signi�cant complexity and require sophisticated
bookkeeping and expensive logging�

ViewCaches are maintained in ADMS by its Incremental Access Method �IAM� which amortizes
their creation and update costs over a long period of time �inde�nitely�� IAM maintains update logs
which permit either eager or deferred �periodic� on�demand� event�driven� update strategies� The
on�demand strategy allows a ViewCache to remain outdated until a query needs to selectively or
exhaustively materialize the underlying view� The IAM is designed to take advantage of the ViewCache
storage organization� a variation of packed R�trees �RL���� This organization attempts to reduce the
number of intermediate node groupings in the R�tree� This number is the most signi�cant parameter
in determining the cost of materializing the ViewCaches� Both ViewCache incremental update and
tuple materialization �dereferencing� from it �ViewCache� are interleaved using one�pass algorithms�
The interleaved mode avoids the duplication of retrieving the modi�ed records to be updated and then
materialized again for the remaining of the query processing�

Compared to the query modi�cation technique for supporting views that requires re�execution of
the de�nition of the view� and to the incremental algorithms for MVFs �TB���� IAM on ViewCaches of�
fers signi�cant performance advantages� in some cases up to an order of magnitude� The decision about
whether or not an IAM on a ViewCache is cost�e
ective� i�e� less expensive than re�execution� depends
on the size of the di
erentials of the update logs between consecutive accesses of the ViewCaches� For
frequently accessed views and for base relations which are not intensively updated� IAM by far outper�
forms query modi�cation �RES���� Performance gains are higher for multilevel ViewCaches because all
the I�O and CPU for handling intermediate results is replaced with e
cient pointer manipulation�

��

��� The ADMS Adaptive Bu�er Manager

ADMS uses an adaptive allocation scheme to allocate bu
ers from the global bu
er pool to concurrent
queries� Page reference behavior of ViewCache materialization and recurring queries involving MVFs
are quanti�ed using page fault statistics obtained during executions �CR���� This page fault information
is fed back to the bu
er manager and gets associated with each MVF and�or ViewCache� An �adaptive
curve��tting� module is used to capture the Marginal Gain Ratio �MGR� on page faults� i�e� the faults
reduction per additional bu
er allocated to a query using a ViewCache� ADMS#s bu
er manager
basically identi�es two important characteristics� the �critical size�� that is the number of bu
ers
beyond which the reduction of faults starts diminishing� and the �saturation size�� the number of
bu
ers beyond which no reduction is attained� As queries utilizing MVFs and ViewCaches recur� the
bu
er manager observes� adapts� and saves their characteristics to continuously capture the e
ects on
page faulting as the database changes in time�

ADMS allocates bu
ers to these queries according to their page fault characteristics and the global
bu
er availability� Bu
ers are allocated to individual queries�relations in proportion to their average
Marginal Gain Ratios �MGR� subject to the following constraints� �a� never allocate more than the
saturated size �avoid waste�� and �b� when the demand for bu
ers is high� never exceed the critical size
of each reference string�

Experimental results in ADMS validated the advantage of MGR over traditional methods such
as global LRU and DBMIN �CD���� Through a comprehensive set of ADMS experiments� we demon�
strated thatMGR o
ers signi�cant performance improvement over a pattern prediction�based algorithm
�NFS��� and a load control�based algorithm �FNS���� In all cases of query mixing and under various
degree of data sharing� on the average� MGR outperforms the second best strategy by ��$� ��$ in
query throughput�

The merit of the MGR allocation scheme can be attributed to the feedback of faulting characteris�
tics� which provides more insightful bu
er utilization information than the probabilistic analysis�based
methods which rely on the infamous crude assumption of uniformity�

� The ADMS Query Optimizer

The ADMS query optimizer invokes a subsumption matching algorithm to identify relevant ViewCaches
and generates alternative query plans utilizing those matched ViewCaches� It then selects between in�
cremental or re�execution update strategies depending on their corresponding projected costs� Another
key feature of the ADMS query optimizer is its adaptive selectivity estimation mechanism� This mech�
anism provides cost�e
ective and accurate selectivity estimation using query feedback� In essence� this
feedback is information contained in the MVFs and ViewCaches constructed or updated during prior
query processing� Minimal �CPU only� overhead is incurred to compute and adaptively maintain selec�
tivity statistics� With this approach� ADMS completely avoids the overhead of the traditional o
�line
access of the database for gathering value distribution statistics� The �rst subsection describes the
ADMS query optimizer� the second subsection describes the technique of adaptive selectivity estima�
tion�

��� Subsumption Driven Optimization

The query optimizer uses a dynamic programming graph search algorithm for obtaining an e
cient
query execution plan� A query graph can be reduced to another one generating the same �nal result
either by a SelJoin�reduction or by amatch�reduction� A SelJoin�reduction corresponds to the execution
of a SelJoin for evaluating a fragment of the query graph� a match�reduction corresponds to answering

��

v1 v2

R1 R2 R3 R4

v3

q0

R1 R3 R4R2
q1

q2

R3 R4i1

v1 R3 R4

match−reduction

SelJoin −reduction

New ViewCach

Pre−existing ViewCache
Base table

(a) Reductions

(b) LAPS
q3

q2

q5

q7

v1 v2
q8

v1
q9

v2
q10

q11

q12

q13

q1
v1 R3 R4

v3
q6

R4

q4

v2R1 R2

q0 R1 R3 R4R2

(c) Search Space

Figure �� LAPS� Query Graph Reductions� Subsumption Reductions Rules and Search Space

the query graph via a matched� pre�existing ViewCache that subsumes the reduced fragment� Figure ��a
illustrates the two di
erent kinds of reductions that can be applied to a query graph� The Logical
Access Path Schema �LAPS� �Rou��� is used to organize the ViewCaches in a directed acyclic graph
data structure� This is built from the database catalogs containing the de�nition of ViewCaches along
with their derivation paths� Figure ��b shows a LAPS with four base relations and three ViewCaches�
The search of the query optimizer traverses top�down the LAPS structure and applies match�reductions
in a breadth��rst manner�

Subsumption is used during the match�reduction for deciding whether or not a more general View�
Cache V �logically implies� a query fragment q� This is in general an undecidable problem� but in the
context of database queries it is an NP�hard problem �RH���� Although several sophisticated algorithms
have been proposed �LY��� S����� we adopted a rather simple subsumption algorithm which extends
the �direct elimination� technique proposed in �Fin��� and has worst case complexity of O�mn�� where
m and n are the number of predicates in V and q respectively� The subsumption algorithm is sound�
in the sense that it answers positively only when the implication statement is valid� but not complete�
in the sense that it may not discover all possible subsumable clauses�

For each reduction� the cost of performing the SelJoin from scratch or accessing the matched
ViewCache is estimated and accumulated in the reduced query graph� If the ViewCache is outdated�
the cost includes both alternatives� the projected cost of an incremental update and the projected cost
of a re�execution of the ViewCache� Thus� starting from the initial query graph� the search algorithm
generates successive query graphs until a single node graph is obtained which represents the query#s
result� The path with the lowest cost is then selected for execution� Figure ��c shows the search space
for the query and LAPS given in �gure ��a and b�

The performance of the ADMS query optimizer was evaluated by running a comprehensive set
of experiments using a benchmark database and synthetic queries� By turning o
 the subsumption
algorithm and the incremental access methods� the ADMS optimizer reduces to the System R �SAC� ���
thus allowing us to make comparisons� The experiments showed that ViewCaches with subsumption

��

and dynamic selection between incremental update and re�execution of MVFs and ViewCaches save
substantial query execution time� and thus� increase the overall query throughput under a variety of
query and update loads �CR��b�� The improvement ranged between ��$ � 	�$ in query throughput
under moderate update loads while it su
ered no loss under heavy update loads� Although query
optimization cost is increased by up to one tenth of a second per query� this overhead is insigni�cant
when compared to query execution reduction of seconds or tens of seconds�

��� Adaptive Selectivity Estimation

The most signi�cant factor in evaluating the cost of each query execution plan is selectivity � the
number of tuples in the result of a relational selection or join operator� Various methods based on
maintaining attribute value distributions �Chr��� PSC��� MD��� SLRD��� Ioa��� and query sampling
�HOT��� LN��� HS��� have been proposed to facilitate selectivity estimation�

ADMS uses and adaptively maintains approximating functions for value distributions of attributes
used in query predicates� We implemented both polynomials and splines� and an �adaptive curve�
�tting� module which feeds back accurate selectivity information after queries and updates �CR��a��
The CPU overhead of adapting the coe
cients of the approximating functions is hardly noticeable
but the estimation accuracy of this approach is comparable to traditional methods based on periodic
o
�line statistics gathering or sampling� However� unlike these methods� the query feedback of ADMS
incurs no I�O overhead and� since it continuously adapts� it accurately re!ects changes of the value
distributions caused by updates in the database�

In all our experiments� the adaptive selectivity estimating functions converge very closely to the
actual distribution after � to �� query feedbacks of random selection ranges on the attribute� For a
rather staggered actual distribution� it takes almost the same time to converge to a stable curve� In
such a case� the resultant curve may not �t seamlessly to the actual distribution due to the smoothness
nature of the polynomials� but it represents the optimal approximation to the actual distribution in
the sense of least square errors�

	 ADMS�� An Enhanced Client�Server Database Architecture

Commercial Client�Server DBMS architectures� which exemplify primary copy distributed database
management� have signi�cant performance and scalability limitations� Firstly� record�at�a�time navi�
gation through their interfaces is way too slow to be functional� Secondly� a dynamic SQL interface
is rather restrictive� simply because no optimized plans can be submitted� the user is forced to use
the server#s optimization services as they are� Finally� these architectures do not scale up because all
database accesses �I�O� and processing are done on the server�

The ADMS� architecture� �RK�	b� RK�	a�� preceded all known database client�server architec�
tures and introduced the concept of a client DBMS that cooperates with the servers not only for query
processing� but also for data accessing from replicated MVFs dynamically downloaded onto their disks�
Figure � shows the ADMS� architecture with two commercial database servers and three clients� The
ADMS� client has all the capabilities of ADMS� but is usually run in single user mode �indicated by
the � sign�� The ADMS" component on the �gure is the gateway layer that runs as an application on
top of the underlying DBMS�

A user on an ADMS� client can connect to a number of commercial DBMS servers and make queries
against their databases� Query results are downloaded and incrementally maintained as MVFs on the

�Splines are piecewise polynomials and give the database administrator the �exibility of choosing parameters which
best �t the application� such as the degree and the number of polynomial pieces�

��

Application
Software

Client

Comm. Soft.

ADMS− Buffers

...

ORACLE INGRES

ADMS+ ADMS+

Application
Software

Client

Comm. Soft.

ADMS− Buffers

Application
Software

Client

Comm. Soft.

ADMS− Buffers

Net WAN/LAN

Figure �� The ADMS� Client�Server Architecture

client ADMS�� Again subsumption of views and incremental access methods provide the foundations
for e
cient and controlled management of the data replication� Since ADMS� views can be glued
from multiple global heterogeneous sources� i�e� server�server joins� combined with possibly proprietary
data on the client� i�e� server�client joins� ADMS� became the �rst conceived Data Warehousing
Architecture and is operational since ���� �Eco��� RES����

Updates from a client are sent to the primary copy on the server�s� and �nd their way to the
downloaded MVFs through incremental update algorithms by transmitting the log di
erences �RES����
ADMS� supports eager and a number of deferred update propagation strategies including on�demand�
periodic� and event driven� The deferred strategies allow ADMS� to operate under �weak connectiv�
ity� mode in which clients can be disconnected and reconnected at later time� Again� MVFs and their
incremental update algorithms provide the foundations of this architecture�

The value of the ADMS� architecture is three�fold� First� it distributes asynchronous and parallel
I�O to the clients� alleviating the I�O bottleneck on the servers �DR���� This is a signi�cant perfor�
mance booster because of the exhibited scalability of the architecture� Second� it provides a controlled
mechanism for managing replication and update propagation �DR���� Third� by caching MVFs on the
clients it permits client mobility and database access in disconnected mode� whereby a client uses its
local disk when some of the database server�s� are unaccessible�

��� Performance of ADMS�

We extensively studied the ADMS� Enhanced Client�Server architecture� �RD��� DR��� DR��� and
showed that it �a� outperforms all other client�server architectures including those with equal number

��

of disks replicating their data� �b� scales up very nicely and reaches linear scalability on read� and
append�mostly databases� The studies showed that the distribution of the I�O to the client disks and
the parallelism obtained this way are the main contributors to the performance and scalability�

In �DR���� we proposed a number of update propagation techniques for the ADMS� architecture�
We then studied performance under various workloads and scalability as the number of participating
clients increases� We showed that� under high server resource utilization� a simple broadcasting strategy
for server updates gives better performance than any other update propagation policy� However� when
none of the server resources reach full utilization� on�demand update propagation strategy furnishes
better results�

��� Utilization of MVF�s on the Clients

In the distributed environment of ADMS�� query requests from a client may be answered by MVFs
that reside on other clients instead of retrieving from the server�s�� This is very important for perfor�
mance reasons but even more so for fault tolerance when the connections between some clients and the
servers are unavailable�

We have extended the ADMS subsumption algorithm to discover unions of MVFs that subsume a
client#s query posed on the network as a range query �Pap���� A query may be subsumed by the union
of a number of MVFs residing on di
erent clients even when none of the fragments does� Duplicates
resulting from the union are �ltered out by constructing additional range predicates�

Union subsumption can be used in several ways� First� we can improve performance of a query
by replacing expensive join operators with simpler selections� Second� given that the MVFs may be
located at client workstations we can reduce the contention for the server resources� Third� we can use
union subsumption to parallelize query processing with fragments residing on di
erent workstations�
Note� even if we are not able to subsume the client query� we may be able to subsume some part of the
data that are necessary for the computation of the client query� i�e�� we may be able to subsume some
nodes of the query graph by unions of MVFs�

Assuming that the MVFs are not indexed� the optimizer attempts to minimize the total size of the
MVFs � equivalently� the total retrieval time � and also attempts to distribute the work evenly to all
clients� However� the decision of an optimal set that subsumes Q is an NP�hard problem� Thus� we use
a greedy polynomial best��t optimization algorithm that selects at every step the �most promising�
MVF� In addition� the selected set must not have more than a few hundred MVFs� because otherwise�
the cost of applying the �lters becomes greater than the cost of retrieving the MVF from the disk�

� Conclusions

This article presented the motivation� concepts� ideas� and techniques of the ADMS Project� Many
of the ideas pioneered in this project are �nding their way into the commercial world� For example�
Oracle is now o
ering limited incremental refresh of select only MVFs� Also� both Sybase and Ingres
use incremental techniques for maintaining replicated data� Similarly� the recent !urry of research
activity on views and their management is gratifying� We are content that our long�term conviction
and persistence on view maintenance and replication have paid o
� and that our ideas are �nally
receiving appropriate attention�

The ADMS design document was written in ����� and implementation began on a SUN � work�
station at that time� It has gone though several major revisions� such as when the ViewCache storage
organization was evolving ����� ���	� ��� � and when the SQL parser and cost�based optimizer were
added in ����� It has now migrated and been ported to SUN SPARC� DEC MIPS� HP SNAKE� and

�	

IBM POWER architectures running their various !avors of UNIX� The uni�ed source tree consists of
approximately ������� lines of �C� code�

The ADMS� client�server architecture was designed during the fall of ���� but the �rst imple�
mentation of the prototype began only in late ��� � ADMS� is now in its third incarnation which
includes new client�server and server�server join strategies� enhanced server catalogs �for selectivity es�
timation�� and a robust TCP�IP based communication layer� Last year� we ran our �rst trans�atlantic
joins between an Oracle database at the University of Maryland and an Ingres database at the National
Technical University in Athens� Greece�

And the ADMS saga goes on� We are targeting our energy towards adaptive and intelligent tech�
niques capable of learning from running queries against the database and �ne tune their processing� We
have developed a query optimizer for the ADMS� client� It has an adaptive cost estimator which ex�
hibits excellent learning capability over foreign commercial DBMSs� An experiment is being conducted
as of this writing and we will report the results in the near future�

References

�BLT��� J�A� Blakeley� P�A� Larson� and F�W� Tompa� E�ciently Updating Materialized Views� In Proc
 of
the ���� ACM SIGMOD Intern
 Conference� pages �

�
� August
	���

�CD��� H� Chou and D� DeWitt� An Evaluation of Bu�er Management Strategies for Relational Database
Systems� In Procs
 of the ��th Intl
 Conf
 on VLDB� pages
��

�
�
	���

�Chr��� S� Christodoulakis� Estimating Record Selectivities� Inf
 Syst
� �����
��

��
	���

�CR	�� C�M� Chen and N� Roussopoulos� Adaptive Database Bu�er Allocation Using Query Feedback� In
Procs
 of the ��th Intl
 Conf
 on Very Large Data Bases�
		��

�CR	�a� C�M� Chen and N� Roussopoulos� Adaptive Selectivity Estimation Using Query Feedback� In Procs

of the ACM SIGMOD Intl
 Conf
 on Management of Data�
		��

�CR	�b� C�M� Chen and N� Roussopoulos� The implementation and Performance Evaluation of the ADMS
Query Optimizer� Integrating Query Result Caching and Matching� In Procs
 of the �th Intl
 Conf

on Extending Database Technology�
		��

�DR	�� A� Delis and N� Roussopoulos� Performance and Scalability of Client
Server Database Architectures�
In Proc
 of the ��th Int
 Conference on Very Large Databases� Vancouver� BC� Canada� August
		��

�DR	�� A� Delis and N� Roussopoulos� Performance Comparison of Three Modern DBMS Architectures�
IEEE�Transactions on Software Engineering�
	����
��

��� February
		��

�DR	�� A� Delis and N� Roussopoulos� Management of Updates in the Enhanced Client
Server DBMS� In
Proccedings of the ��th IEEE Int
 Conference on Distributed Computing Systems� Poznan� Poland�
June
		��

�Eco�	� N� Economou� Multisite Database Access in ADMS�� Master�s thesis� University of Maryland�
College Park� MD�
	�	� Department of Computer Science�

�FCL	�� M� Franklin� M� Carey� and M� Livny� Local Global Memory Management in Client
Server DBMS
Architectures� In Proc
 of the ��th Int
 Conference on Very Large Data Bases� Vancouver� Canada�
August
		��

�Fin��� S� Finkelstein� Common Expression Analysis in Database Applications� In Procs
 of the ACM
SIGMOD Intl
 Conf
 on Management of Data� pages ���
����
	���

�FNS	
� C� Faloutsos� R� T� Ng� and T� Sellis� Predictive Load Control for Flexible Bu�er Allocation� In
Procs
 of the ��th Intl
 Conf
 on VLDB� pages ���
����
		
�

�HOT��� W� Hou� G� Ozsoyoglu� and B� K� Taneja� Statistical Estimators for Relational Algebra Expressions�
In Procs
 of the ACM SIGACT�SIGMOD Symposium on Principles of Database Systems� pages
���
����
	���

�

�HS	�� P� Haas and A� Swami� Sequential Sampling Procedures for Query Size Estimation� In Procs
 of the
ACM SIGMOD Intl
 Conf
 on Management of Data� pages ��

���� San Diego� CA�
		��

�Ioa	�� Y�E� Ioannidis� Universality of Serial Histograms� In Procs
 of the ��th Intl
 Conf
 on VLDB� Dublin�
Ireland�
		��

�LN	�� R� J� Lipton and J� F� Naughton� Practical Selectivity Estimation through Adaptive Sampling� In
Procs
 of the ACM SIGMOD Intl
 Conf
 on Management of Data� pages

� Atlantic City� NJ�

		��

�LY��� P���A� Larson and H� Z� Yang� Computing Queries from Derived Relations� In Procs
 of the ��th Intl

Conf
 on VLDB� pages ��	
��	�
	���

�MD��� M� Muralikrishma and D� DeWitt� Equi�depth Histograms for Estimating Selectivity Factors for
Multi�dimensional Queries� In Procs
 of the ACM SIGMOD Intl
 Conf
 on Management of Data�
pages ��
��� Chicago� Illinois�
	���

�NFS	
� R� T� Ng� C� Faloutsos� and T� Sellis� Flexible Bu�er Allocation Based on Marginal Gains� In Procs

of ���� ACM SIGMOD Intl
 Conf
 on Management of Data� pages ���
�	��
		
�

�Pap	�� Y� Papakonstantinou� Computing a Query as a Union of Disjoint Horizontal Fragments� Technical
report� Department of Computer Science� University of Maryland� College Park� MD�
		�� Working
Paper�

�PSC��� G� Piatetsky�Shapiro and C� Connell� Accurate Estimation of the Number of Tuples Satisfying a
Condition� In Procs
 of the ACM SIGMOD Intl
 Conf
 on Management of Data� pages ���
����
Boston� MA�
	���

�RD	
� N� Roussopoulos and A� Delis� Modern Client
Server DBMS Architectures� ACM�SIGMOD Record�
��������
�
� September
		
�

�RES	�� N� Roussopoulos� N� Economou� and A� Stamenas� ADMS� A Testbed for Incremental Access Meth�
ods� IEEE Trans
 on Knowledge and Data Engineering� ��������
����
		��

�RH��� D�J� Rosenkrantz and H�B� Hunt� Processing Conjunctive Predicates and Queries� In Procs
 of the
�th Intl Conf
 on VLDB�
	���

�RK��a� N� Roussopoulos and H� Kang� Principles and Techniques in the Design of ADMS�� Computer�
December
	���

�RK��b� N� Roussopoulos and Y� Kang� Preliminary Design of ADMS�� A Workstation
Mainf rame Inte�
grated Architecture� In Proc
 of the ��th Int
 Conference on Very Large Databases� August
	���

�RL��� N� Roussopoulos and D� Leifker� Direct Spatial Search on Pictorial Databases Using Packed R�trees�
In Procs
 of ���	 ACM SIGMOD Intl
 Conf
 on Management of Data� Austin�
	���

�Rou��� N� Roussopoulos� The Logical Access Path Schema of a Database� IEEE Trans
 on Software Engi�
neering� SE���������
����
	���

�Rou	
� N� Roussopoulos� The Incremental Access Method of View Cache� Concept� Algorithms� and Cost
Analysis� ACM�Transactions on Database Systems�
��������
���� September
		
�

�S��	� X� Sun et al� Solving Implication Problems in Database Applications� In Procs
 of the ACM SIGMOD
Intl
 Conf
 on Management of Data� pages
��

	��
	�	�

�SAC��	� P� Selinger� M� Astrahan� D� Chamberlin� R� Lorie� and T� Price� Access Path Selection in a Relational
Data Base System� In SIGMOD�Conference on the Management of Data� pages ��
��� ACM� June

	�	�

�SLRD	�� W� Sun� Y� Ling� N� Rishe� and Y� Deng� An Instant and Accurate Size Estimation Method for Joins
and Selection in a Retrieval�Intensive Environment� In Procs
 of the ACM SIGMOD Intl
 Conf
 on
Management of Data� pages �	
��� Washington� DC�
		��

�TB��� F� Tompa and J� Blakeley� Maintaining Materialized Views Without Accessing Base Data� Informa�
tion Systems�
������	�
����
	���

��

Data Integration and Warehousing Using H�O y

Gang Zhouz Richard Hull Roger King Jean�Claude Franchitti

Computer Science Department� University of Colorado
Boulder� CO ��
�����
�

email� fgzhou� hull� king� franchitg�cs	colorado	edu

Abstract

This paper presents a broad framework for data integration� that supports both data materialization and
virtual view capabilities� and that can be used with legacy as well as modern database systems
 The frame�
work is based on �integration mediators�� these are software components that use techniques generalized
from active databases� such as triggering and rulebases
 This permits the logic� especially for incremental
maintenance of materialized data� of an integration mediator to be speci�ed in a relatively declarative and
modular fashion

One speci�c focus of this paper is the development of a taxonomy of the solution space for supporting
and maintaining integrated views
 A second focus concerns providing support for intricate object matching
criteria that specify when object representations �e
g
� OIDs� in di�erent databases correspond to the same
object�in�the�world �or interchangeable ones�

� Introduction

One of the most important computer science problems today is to develop !exible mechanisms for e
ec�
tively integrating information from heterogeneous and geographically distributed information sources�
one or more of which may be legacy systems� Among a wide range of techniques addressing this
problem� data warehousing� i�e�� materializing integrated information in a persistent store� is gaining
increasing importance �WHW��� KAAK��� IK��� ZGHW���� This paper describes how we are apply�
ing research being developed in the H�O project at the University of Colorado� Boulder� to support
data integration� We describe here a broad framework for data integration� that supports both data
materialization and virtual view capabilities� and that can be used with legacy as well as modern
database systems�

The main focus of this paper is on �i� a taxonomy of the solution space for the problem of data
integration� �ii� the concept of �active modules�� these are software components that support the spec�
i�cation of behavior using rules as in active databases� and �iii� the Squirrel prototype for constructing
�integration mediators�� in the sense of �Wie���� These integration mediators are active modules that
support data integration using a hybrid of virtual and materialized data approaches�

Modern integration applications involve a number of issues� including di
erent kinds of data and
data repositories� available resources at the site of the mediator �e�g�� storage capacity�� requirements
on the integrated view �e�g�� query response time and up�to�dateness�� As a result� no single approach
to supporting data integration can be universally applied� To better understand the impact of those

yThis research was supported in part by NSF grant IRI���
���� and ARPA grants BAA����
	�� and ����
�RT�AAS�
zA student at the University of Southern California

��

interface Student �

string studName�

integer��� studID� �� key

string major�

string local�address�

string permanent�address� ��

Subschema of StudentDB database

interface Employee �

string empName�

integer��� SSN� �� key

string divName�

string address� ��

Subschema of EmployeeDB
database

Figure �� Subschemas of StudentDB and EmployeeDB in ODL syntax

issues on data integration� we have developed a taxonomy of the solution space� We consider several
spectra in the solution space� including for example a spectrum about the degree of materialization�
which ranges from fully materialized to fully virtual�

A fundamental aspect of data warehousing is propagation of incremental updates at the source
databases to the warehouse� Activeness� as found in active databases �WC���� is emerging as the
paradigm of choice for supporting such propagation� Part of the H�O project is focused on the notion
of �active module� �Dal��� BDD����� These are software modules that include a rule base� an execution
model for rule application� and optionally a local persistent store� While an active module might be
a full�!edged active database� it might also be a lightweight process supporting a focused family of
functionalities� Intuitively speaking� the concept of active module allows the separation of activeness
from active databases� An active module permits separate speci�cation of the logic �in the rule base�
and the control �in the execution model� of an application� A substantial bene�t of the active module
concept is that it allows the development of integrated mediators in a modular fashion� thus facilitating
convenience� maintainability� and reusability�

Finally� this paper presents a generator for integration mediators� called Squirrel� The framework
for generating integration mediators is currently focused primarily on four issues�

� managing fully materialized� fully virtual� or hybrid integrated information in the mediator�

� supporting a variety of incremental update mechanisms for materialized�cached data� which can
work with legacy as well as state�of�the�art �active� DBMSs�

� developing a high level integration speci�cation language �ISL�� so that integration mediators can
be automatically generated based on ISL speci�cations of data integration applications� and

� providing support for intricate object matching criteria that specify when object representa�
tions in di
erent databases refer to the same object�in�the�world �or interchangeable ones�� The
traditional virtual approach to data integration typically uses universal keys to perform object
matching� and cannot e
ciently support more intricate object matching criteria�

This paper is a survey of some aspects of the on�going research in the H�O project at the University
of Colorado� Boulder� and the presentation here is somewhat abbreviated� More details can be found in
�BDD���� ZHKF��� DHDD��� DHR���� The rest of the paper is organized as follows� Section � gives
a motivating example that illustrates our approach� Section � presents the taxonomy of the space of
approaches to data integration� The notion of active modules is described in Section �� Section � gives
a high level description of the Squirrel framework� including a description of ISL and how integration
mediators are generated from ISL speci�cations� The conclusion of the paper is given in Section 	�

� An Example Problem and Its Solution

This section gives an informal overview� based on a simple example� of our framework for data integra�
tion using an integration mediator� An important component of the mediator is a data warehouse that

��

DEFINE VIEW Student�Employee

SELECT s	studName
 s	major
 e	divName

FROM s IN StudentDB�Student
 e IN EmployeeDB�Employee

WHERE match�s
 e
�

Figure �� De�nition of view Student Employee expressed in extended OQL

holds a materialized portion of the integrated view and also other data from the source databases that
is needed for incrementally maintaining the integrated view� More details concerning this development
may be found in �ZHKF����

In the example we assume that there are two databases� StudentDB and EmployeeDB� that hold
information about students at a university and employees in a large nearby corporation� respectively�
The relevant subschemas of the two databases are shown in Figure �� An integration mediator� called
here S E Mediator� will maintain an integrated view about persons who are both students and employ�
ees� providing their names� majors� and names of the divisions where they work� The de�nition of the
view is given in Figure �� where match is a predicate derived from a user�given matching criteria that
is used to determine whether two objects match �i�e�� they refer to the same person in the real world��

A host of issues are raised when attempting to perform this kind of data integration in practical
contexts� The primary emphasis of our current research is on three fundamental issues�

�a� mechanisms to maintain replicated �possibly derived� data and how to automatically generate
rules for a given data integration application�

�b� mechanisms for the construction of integrated views� perhaps involving both materialized and
virtual data� and

�c� mechanisms to support rich object matching criteria�

In this section we consider each of these issues with respect to the example problem in reverse order�
With regards to issue �c�� we assume in the example that a student object s matches an employee

object e if ��� either s�local address � e�address or s�permanent address� e�address� and ��� their
names are �close� to each other according to some metric� for instance� where di
erent conventions
about middle names and nick names might be permitted� The �closeness� of names is determined by
a user�de�ned function� called here close names��� that takes two names as arguments and returns a
boolean value� It should be noted that no universal key is assumed for the class of student employees�
As a result� under the traditional approach based on a virtual integrated view and query shipping� the
potentially expensive step of identifying matching pairs of objects may be incurred with each query
against the view� However� if the update�to�query ratio is su
ciently small� then it will be much more
e
cient to materialize the match information and update it incrementally�

To support the object matching criteria between students and employees� we propose that the
data warehouse of S E Mediator holds three classes� a class called Stud match Emp and two auxiliary
classes that are used to facilitate incremental updates of the objects in Stud match Emp class� Speak�
ing intuitively� Stud match Emp will hold pairs of matching Student and Employee objects� For this
example� the two auxiliary classes are Stud minus Emp and Emp minus Stud� Stud minus Emp will hold
one object for each student in Student who is not an employee� and analogously for Emp minus Stud�

Figure � shows the interfaces of the three classes in more detail� Here the Stud minus Emp and
Emp minus Stud classes include the attributes needed to perform matches� The Stud match Emp class
holds all of the attributes from both Stud minus Emp and Emp minus Stud� Attributes corresponding
to s�major and e�divName in the export class Student Employee are not present in Stud match Emp�
in this example they are supported as virtual attributes�

��

interface Stud�minus�Emp �

string studName�

integer��� studID�

string local�address�

string permanent�address� ��

interface Emp�minus�Stud �

string empName�

integer��� SSN�

string address� ��

interface Stud�match�Emp �

string studName�

integer��� studID�

string local�address�

string permanent�address�

string empName�

integer��� SSN�

string address� ��

Figure �� Class interfaces of S E Mediator

R�� on message m from StudentDB

if create Student� x� sn
 sid
 maj
 ladd
 padd

then �create Stud�minus�Emp�new� x	sn
x	sid
x	ladd
x	padd
� pop message m��

R�� on create Stud�minus�Emp� x� sn
 sid
 ladd
 padd

if �exists Emp�minus�Stud�y� en
 ssn
 addr
 and close�names�x	sn
 y	en

and �x	ladd � y	addr or x	padd � y	addr

then �delete Stud�minus�Emp�x
� delete Emp�minus�Stud�y
�

create Stud�match�Emp�new� x	sn
x	sid
x	ladd
x	padd
y	en
y	ssn
y	addr
��

Figure �� Sample rules for maintaining local store of the integration mediator

We now illustrate �b� the issue of constructing integrated views� As just noted� in the example so�
lution s�studName is materialized in S E Mediator� while s�major and e�divName are virtual� Queries
against the view would be broken into three pieces� one each for StudentDB� for EmployeeDB� and for
the Stud match Emp class� Suppose now that the cost of query shipping to EmployeeDB is considered
to be very high� Then we can adopt a solution involving more materialization as follows� an attribute
divName �division name� is included in both the Stud match Emp and Emp minus Stud classes� and is
maintained by S E Mediator in a materialized fashion� In this case� the integration mediator does not
need to ship subqueries to EmployeeDB� More generally� given a rich integrated view� some portions
can be supported using materialization and others using the virtual approach� Further� the choice of
what is materialized or virtual can be changed dynamically�

Finally� we turn to issue �a�� that of incrementally maintaining materialized data in the integration
mediator� Two basic issues arise� �i� importing information from the source databases and �ii� correctly
maintaining the materialized data to re!ect changes to the source databases� In connection with the
example� with regards to �i� we assume that both source databases can actively send messages contain�
ing the net e
ects of updates �i�e�� insertions� deletions� and modi�cations� to S E Mediator� �Other
possibilities are considered in Section ��� A rule base can be developed to perform �ii�� Two repre�
sentative rules responding to the creation of new Student objects in the source database StudentDB�
written in a pidgin H�O �BDD���� DHR��� rule language� are shown in Figure �� Intuitively� the two
rules state�

Rule R�� If an object of class Student is created� create a new object of class Stud minus Emp�

Rule R�� Upon the creation of a Stud minus Emp object x� if there is a corresponding object y of class
Emp minus Stud that matches x� then delete x and y� and create a Stud match Emp object that
represents the matching pair�

The complete rule base would include rules dealing with creation� deletion� and modi�cation of objects
in both source databases� and are generated automatically �see Section ���

��

No� Spectra Range

 Materialization fully materialized �� hybrid �� fully virtual
� Activeness of Source DB su�cient activeness �� restricted activeness �� no activeness

� Maintenance Strategies incremental update �� refresh
� Maintenance Timing trans� commit� net change� network reconnect� periodic� ���

Table �� Solution space for data integration problems

� A Taxonomy of the Solution Space for Data Integration

The solution presented in the previous section for the Student�Employee example represents just one
point in the space of possible approaches to solving data integration problems using integration me�
diators and data warehousing� This section identi�es the major spectra of this solution space� More
details concerning this taxonomy may be found in �ZHKF����

Our taxonomy is based on four spectra �Table ��� The �rst spectrum is relevant to all solutions for
data integration� and the latter three are relevant to solutions that involve data warehousing� We feel
that these spectra cover the most important design choices that must be addressed when solving a data
integration problem� �Some other dimensions include kinds of matching criteria used� languages used
for view de�nition� and support for security�� Within each spectra we have identi�ed what we believe
to be the most important points� relative to the kinds of data integration problems and environments
that arise in practice� While the spectra are not completely orthogonal� each is focused on a distinct
aspect of the problem�

The taxonomy is useful in creating modular implementations of integration mediators� For example�
the taxonomy suggests that the implementation of incremental update can be independent from the
choice and implementation of maintenance timing� Such modularity facilitates the reusability and
maintainability of the rulebases in integration mediators�

Before discussing the spectra individually� we indicate where the solution of the previous section �ts
in the taxonomy� The solution assumed partially materialized and partially virtual �hybrid� approach
�Spectrum �� and that the source databases were su
ciently active �Spectrum ��� The Maintenance
Strategy �Spectrum �� used was incremental update� and Maintenance Timing �Spectrum �� was event
triggering by the source databases�

��� Materialization

This spectrum concerns the approach taken by an integration mediator for physically storing the data
held in its integrated view� The choices include

fully materialized approach� as presented in references �WHW��� KAAK���� which materializes all
relevant information in the data warehouse of the mediator�

hybrid approach� as illustrated in the Student�Employee example of Section �� that materializes only
part of the relevant information� and

fully virtual approach� as presented in �DH��� ACHK��� FRV���� that uses query pre�processing and
query shipping to answer queries that are made against the integrated view�

The fully virtual approach saves storage space and o
ers acceptable response time for queries if
the computation of the view de�nition is not expensive and network delay is minimal� e�g� the source
databases and the mediator are located on a local area network� In many other cases� the fully
materialized approach is much more e
ective�

��

A compromise between the fully virtual and fully materialized approaches is the hybrid approach�
which materializes only the data that is most critical to the response time and leaves other data virtual
to conserve storage space of the mediator� as illustrated in Section ��

It is well�known that data from multiple information sources cannot be accessed at precisely the
same time� As a result� the answer to a query against an integrated view may not correspond to
the state of the world at any given time� and inconsistent data may be retrieved� This problem is
exacerbated if some of the data is replicated� as is the case in our approach� The Eager Compensation
Algorithm developed in �ZGHW��� provides a promising direction for solving at least some of these
inconsistency problems� We plan to address this issue in our future research�

��� Activeness of Source Databases

This spectrum concerns the active capabilities of source databases� and is relevant only if some materi�
alization occurs� This spectrum allows for both new and legacy databases� The three most important
points along this spectrum represent three levels of activeness�

Su�cient activeness� A source database has this property if it is able to periodically send deltas
corresponding to the net e
ect of all updates since the previous transmission� with triggering based
either on physical events or state changes� This provides two major advantages� First� it could
signi�cantly reduce the network tra
c by transferring deltas rather than full snapshots of the
membership of a class� Second� most algorithms �BLT�	� GMS��� for maintaining materialized
views compute the incremental updates on derived data based on the net e
ects of the updates
of the source data�

Restricted activeness� A source database has this property if it cannot send deltas� but it has
triggering based on some physical events �e�g�� method executions or transaction commits�� and
the ability to send �possibly very simple� messages to the integration mediator� Perhaps the
most useful possibility here is the case that on a physical event the source database can execute
a query and send the results to the integration mediator� Even if the source database can send
only more limited messages� such as method calls �with their parameters� that were executed�
then the mediator may be still able to interpret this information �assuming that encapsulation
can be violated��

No activeness� This is the case where a source database has no triggering capabilities� In this case
the mediator can periodically poll the source databases and perform partial or complete refreshes
of the replicated information�

��� Maintenance Strategies

Maintenance strategies are meaningful only if some materialization occurs in the mediator� We consider
two alternative maintenance strategies�

incremental update of the out�of�date objects� and

refresh of the out�of�date classes in the mediator by re�generating all their objects�

In general� refreshing is more straightforward in terms of implementation and can be applied under
all circumstances� In contrast� incremental updating is generally more e
cient� especially when the
updates in the source databases a
ect only a small portion of the objects� as is true in most cases�

��� Maintenance Timing

Maintenance timing concerns when the maintenance process is initiated� Many di
erent kinds of
events can be used to trigger the maintenance� Some typical kinds of events include� �i� a transaction
commits in a source database� �ii� a query is posed against out�of�date objects in the mediator� �iii�

��

the net change to a source database exceeds a certain threshold� for instance� �$ of the source data�
�iv� the mediator explicitly requests update propagation� �v� the computer holding the mediator is
reconnected via a network to the source databases� and �vi� a �xed period of time has passed�

With the periodic approach� the user can balance the tradeo
 between out�of�date data and main�
tenance costs� by setting the appropriate length of maintenance cycles�

	 Heraclitus and Active Modules

This section brie!y describes the concept of active module and the underlying Heraclitus paradigm�
which forms one of the roots of the H�O project�

In its broadest sense� an active module �Dal��� BDD���� is a software module that incorporates�

� a rule base� that speci�es the bulk of the behavior of the module in a relatively declarative
fashion�

� an execution model for applying the rules �in the spirit of active databases��

� �optionally� a local persistent store�

An active module can be viewed as capturing some of the spirit and functionality of active databases�
without necessarily being tied to a DBMS� In particular� the separation of rules �logic�policy� from
execution model �implementation�mechanism� allows a more declarative style of program speci�cation�
and facilitates maintenance of the active module as the underlying environment evolves� Reference
�Dal��� describes an implemented prototype system that uses several active modules with di
erent
execution models to support complex interoperation of software and database systems�

A key enabling technology in the development of active modules has been the Heraclitus paradigm
�HJ��� GHJ���� GHJ���� As detailed in those citations� the Heraclitus paradigm permits the !exible
speci�cation of a wide range of execution models based on deferred rule �ring� immediate rule �ring� and
hybrids of these� and also supports rich expressive power in rule conditions� More concretely� it elevates
deltas� i�e�� collections of updates proposed to the current database state� to be �rst�class citizens in
a database programming language� Deltas can be used to easily represent di
erent virtual states that
are created during the course of rule application� and make these accessible to rule conditions�

The Heraclitus�Alg�C� DBPL �GHJ���� GHJ��� implements the Heraclitus paradigm for the re�
lational data model� a central component of the H�O project is the development of the H�O DBPL
�DHDD��� DHR���� an extension and generalization of Heraclitus�Alg�C� for object�oriented databases��

The current experimentation with the framework described in this paper is based on Heraclitus�Alg�C��
and we expect the port to the H�O DBPL to be relatively straightforward�

As noted in the Introduction� our approach to data integration and warehousing is based on in�
tegration mediators� which are a special kind of active module� This allows us to approach the data
integration problem using a framework that supports the declarative speci�cation of behavior� thus
facilitating maintainability and reusability�

� The Squirrel Prototype

Section � presented a broad taxonomy of the solution space for supporting data integration using
mediators� We are currently developing a general tool� called Squirrel� for generating integration
mediators that can accommodate many of the points in that solution space� This section describes
some of the key components of this tool�

�Actually� part or all of the store could be remote� but for the present paper we focus on the case where it is local�
�Indeed� �H�O� is an abbreviation for Heraclitus�OO��

��

Source�DB� StudentDB

interface Student �

string studName�

			 			

��

key� studName�

Source�DB� EmployeeDB

interface Employee �

string empName�

			 			

��

key� empName�

Correspondence ���

Match criteria�

close�names�studName
 empName

AND �address � local�address

OR address � permanent�address

Match object files�

�home�demo�close�names	o

Export classes�

DEFINE VIEW Student�Employee

SELECT s	studName
 s	major
 e	divName

FROM s IN StudentDB�Student

e IN EmployeeDB�Employee

WHERE match�s
 e
�

Figure �� An example of ISL speci�cation

We are currently focused on supporting hybrid materialized�virtual integrated views� but otherwise
on the left�most positions in Table �� i�e�� on su
ciently active source databases� incremental update�
and maintenance timing based on event triggering from the source databases� In this presentation we
focus on the case where information from two databases is to be integrated� the generalization to more
than two databases is a subject of future research�

Squirrel will be used to construct integration mediators for speci�c integration applications� Users
can invoke Squirrel by specifying an integration problem using a high level Integration Speci�cation
Language �ISL� �Subsection ����� Based on this� Squirrel generates a corresponding integration me�
diator �Subsection ����� The presentation here is rather abbreviated� more details are presented in
�ZHKF����

	�� Integration Speci
cation Language �ISL�

The Integration Speci�cation Language �ISL� allows users to specify their data integration applications
in a largely declarative fashion� The primary focus of ISL to be discussed here is on the speci�cation
of integrated views and matching criteria� �Issues such as composing heterogeneous applications� as
handled by� e�g�� Amalgame Speci�cation Language �ASL� �FK���� are not addressed here�� In the
current version of ISL� users can specify ��� �relevant portions of� source database schemas� ��� the
criteria to be used when matching objects from corresponding pairs of classes in the source databases�
and ��� derived classes to be exported from the integration mediator� Item ��� may include conditions
based on� among other things� boolean relations or user�de�ned functions �that may in turn refer
to �look�up tables� or intricate heuristics�� �This part of ISL is optional� it is not needed for data
integration applications that do not involve object matching�� The export classes of item ��� are
speci�ed using �extended� OQL queries� and may refer to both the source databases and the match
classes of the correspondence speci�cations� If an attribute name is unique within the two classes� it can
be used without the class name attached to it� otherwise it takes the form of class name�attr name�
Although not illustrated here� the keyword virtual can be used in ISL speci�cations of export classes�
to indicate that selected attributes or full classes are to be supported in a virtual manner� The ISL
speci�cation of the Student�Employee example is shown in Figure ��

	�� Generating Integration Mediators

In the Squirrel framework� integration mediators share the same basic architecture� which includes
communication facilities with queues for incoming messages� a query processor� a local store� a rule

�	

base� and an execution model for rule application� The communication facilities and query processor
are also common to all Squirrel mediators� We currently use a �xed execution model which uses
deferred �transaction boundary� rule��ring and accumulates the e
ect of rule actions using a natural
composition operator� we are also experimenting with other execution models�

When given an ISL speci�cation� the Squirrel prototype generates an integration mediator based
on the common architecture and features just mentioned� The following components may vary with
each application� �a� the schema de�nition for the local store� �b� the rulebase� and �c� initialization
for the source databases� In what follows we focus primarily on the generation of components �a� and
�b�� i�e�� the schema for the local store and the rule base� Assuming that the source databases are
su
ciently active� �c� has the form of rules for the source databases that propagate relevant updates
to the integration mediator�

With regards to the schema for the local store �a�� the most novel aspect of Squirrel concerns the
maintenance of the materialized information for object matching� We assume here full materialization
of the match classes� In order to support the match classes and the materialized attributes of export
classes we use three kinds of attributes �these sets may overlap��

identi�cation attributes� These are used to identify objects from the source databases� They might be
keys or immutable OIDs �cf� �EK���� from the source databases�

match attributes� These are the attributes referred to in the match criteria� For example� the match
attributes of the class Employee are empName and address�

export attributes� These are attributes that are used in the export classes�

As illustrated in Section �� we use three classes in the local store to maintain match information
for a pair R and S of corresponding classes from the two databases�

Auxiliary class I� R minus S with attribute set equal to the union of at least the identifying and
matching attributes of class R� The �remaining� export attributes may or may not be included�
depending on if they should be materialized� Class R minus S holds one object for each object in
R which does not correspond to any object of S�

Auxiliary class II� S minus R� analogous to auxiliary class I�

Match class� R match S with attribute set the union of those of the two auxiliary classes� Class
R match S contains an object m for each pair �r� s� of objects from R and S� respectively� that
correspond according to the matching conditions�

Note that this framework can also be used to access the sets corresponding intuitively to R � S and
S� R� and also to the the �union� or �outer�join� of R and S�

Export classes are de�ned as views constructed from the source databases and from the match
classes� The current prototype can support export classes that are de�ned using what amounts to
conjunctive queries �AHV���� these correspond to relational algebra queries that can be expressed
using selection� projection� and join� Given a view de�ned by such a query and information about
what parts of it should be materialized� it is relatively straightforward to determine what �projections
of� source database classes should be materialized� The export class itself might also be materialized�
or might be left as virtual� Generalizing this to export classes de�ned using richer queries is a topic of
current research�

The basic approach to generating rules for integration mediators follows the general spirit of �CW���
Cha���� which describe how view de�nitions can be translated into rules for performing incremental
maintenance� The primary mechanism used by Squirrel is a family of rule templates� These are used to
generate the speci�c rules of an integration mediator� based on the object matching and materialization
needed for export classes� To illustrate� we consider how object matching is supported� Templates
are inluded for handling creates� deletes and modi�es arising from either source database� and for
propagating these through the auxiliary and match classes� A representative rule template is�

�

on create R�minus�S�x� r�a�������r�a�v�

if �exists S�minus�R�y�s�a�������s�a�w� �� x match y�

then 	delete R�minus�S�x�
 delete S�minus�R�y�
 create R�match�S�new� m�������m�u��

This template has the following e
ect� on the event that a new R minus S object x is created� if an
object y of class S minus R matches x� then delete x and y and create a R match S object�

Translation of the templates into actual rules uses information about the source database classes�
the auxiliary and match classes of the integration mediator� and possibly user�de�ned functions� In the
running example� the above rule template would generate rule R�� Although the rules generated from
the templates refer to individual objects� the execution model we currently use applies the rules in a
set�at�a�time fashion�

 Conclusions and Current Status

This paper presents a broad framework for using integration mediators based on active modules to inte�
grate and warehouse information from heterogeneous data sources� It makes �ve speci�c contributions
towards database interoperation� To provide context for the research presented here� we �a� present a
taxonomy of the solution space for supporting and maintaining integrated views� with an emphasis on
situations where part or all of the integrated view is materialized� At a more concrete level� our solution
�b� uses integration mediators as a special class of active modules to provide declarative and modular
speci�cation of integration and incremental update propagation� Furthermore� �c� our framework can
work with legacy as well as state�of�the�art DBMSs� We also �d� develop a preliminary version of a
high�level Integration Speci�cation Language �ISL�� along with a description of how to translate ISL
speci�cations into integration mediators� Finally� �e� our framework provides additional support for
intricate object matching criteria�

We are developing the Squirrel prototype for generating integration mediators� These are imple�
mented in the Heraclitus�Alg�C� DBPL� but as the H�O DBPL becomes available we shall port our
prototypes to H�O� For communication between source databases and the integration mediators we
are using Knowledge Query and Manipulation Language �KQML� �FWW�����

In the near future� we plan to extend this research primarily in the direction of the hybrid material�
ized�virtual approach� In one experiment we plan to use the SIMS �ACHK��� query processing engine
to execute queries where matching information is materialized but all other export data is virtual� We
also plan to incorporate mechanisms for integrating data that involves related but �non�congruent�
classes� in the spirit of �Cha��� CH����

Acknowledgements

We are grateful to Omar Boucelma� Ti�Pin Chang� Jim Dalrymple� and Mike Doherty for many in�
teresting discussions on topics related to this research� We also thank Jennifer Widom for her careful
review of this paper and valuable comments�

References

�AHV	�� S� Abiteboul� R� Hull� V� Vianu� Foundations of Databases� Addison�Wesley� Reading� MA�
		��

�ACHK	�� Y� Arens� C�Y� Chee� C�N� Hsu� C�A� Knoblock� Retrieving and integrating data from multiple
information sources� Intl
 Journal of Intelligent and Cooperative Information Systems� �����
��

���
		��

��

�BDD�	�� O� Boulcema� J� Dalrymple� M� Doherty� J�C� Franchitti� R� Hull� R� King� and G� Zhou� Incorpo�
rating active and multi�database�state services into an OSA�compliant interoperability toolkit� The
Collected Arcadia Papers� Second Edition� University of California at Irvine�
		��

�BLT��� J�A� Blakeley� P��A� Larson� F�W� Tompa� E�ciently updating materialized views� Proc
 ACM
SIGMOD Symp
 on the Management of Data� �

�
�
	���

�Cha	�� T��P� Chang� On Incremental Update Propagation Between Object�Based Databases� PhD thesis�
University of Southern California� Los Angeles� CA�
		��

�CH	�� T��P� Chang and R� Hull� On Witnesses and Witness Generators for Object�Based Databases� Proc

of the ACM Symp
 on Principles of Database Systems�
	�
����
		��

�CW	
� Stefano Ceri and Jennifer Widom� Deriving production rules for incremental view maintenance�
Proc
 of Intl
 Conf
 on Very Large Data Bases� ���
��	�
		
�

�Dal	�� J� Dalrymple� Extending Rule Mechanisms for the Construction of Interoperable Systems� PhD
thesis� University of Colorado� Boulder�
		��

�DH��� U� Dayal and H�Y� Hwang� View de�nition and generalization for database integration in a multi�
database system� IEEE Trans
 on Software Engineering� SE�
��������
����
	���

�DHDD	�� M� Doherty� R� Hull� M� Derr� J� Durand� On detecting con�ict between proposed updates� To
appear� Proc
 Intl
 Workshop on Database Programming Languages� Italy� September�
		��

�DHR	�� M� Doherty� R� Hull� M� Rupawalla� The Heraclitus�OO� database programming language�
		��
Technical Report in preparation�

�EK	
� F� Eliassen and R� Karlsen� Interoperability and Object Identity� SIGMOD Record
�������
�	�

		
�

�FK	�� J� C� Franchitti and R� King� A Language for Composing Heterogeneous� Persistent Applications�
Proc
 of the Workshop on Interoperability of Database Systems and Database Applications� Fribourg�
Switzerland� October
��
�
		�� Springer�Verlag� LNCS�

�FRV	�� D� Florescu� L� Raschid� P� Valduriez� Using heterogeneous equivalences for query rewriting in
multidatabase systems� Proc
 of Third Intl
 Conf
 on Cooperative Information Systems �CoopIS�
�	�� Vienna� Austria� May
		��

�FWW�	�� T� Finin� J� Weber� G�Wiederhold� et al� DRAFT Speci�cation of the KQML Agent�Communication
Language� June
��
		��

�GHJ�	�� S� Ghandeharizadeh� R� Hull� D� Jacobs� et� al� On implementing a language for specifying active
database execution models� Proc
 of Intl
 Conf
 on Very Large Data Bases� ��

����
		��

�GHJ	�� S� Ghandeharizadeh� R� Hull� and D� Jacobs� Heraclitus�Alg�C�� Elevating deltas to be �rst�class
citizens in a database programming language� Technical Report USC�CS�	����
� Computer Science
Department� Univ� of Southern California�
		��

�GMS	�� A� Gupta� I�S� Mumick� and V�S� Subrahmanian� Maintaining views incrementally� Proc
 ACM
SIGMOD Symp
 on the Management of Data�
��

���
		��

�HJ	
� R� Hull and D� Jacobs� Language constructs for programming active databases� Proc
 of Intl
 Conf

on Very Large Data Bases� ���
����
		
�

�IK	�� W�H� Inmon and C� Kelley� Rdb�VMS
 Developing the Data Warehouse� QED Publishing Group�
Boston� Massachussetts�
		��

�KAAK	�� W� Kent� R� Ahmed� J� Albert� and M� Ketabchi� Object identi�cation in multidatabase systems�
D� Hsiao� E� Neuhold� and R� Sacks�Davis� editors� Interoperable Database Systems �DS�	� �A��	��
Elsevier Science Publishers B� V� �North�Holland��
		��

�WC	�� J� Widom and S� Ceri� Active Database Systems
 Triggers and Rules for Advanced Database Pro�
cessing� Morgan�Kaufmann� Inc�� San Francisco� California�
		��

�WHW�	� S� Widjojo� R� Hull� and D� Wile� Distributed Information Sharing using WorldBase� IEEE O�ce
Knowledge Engineering� �����
�
��� August
	�	�

��

�WHW	�� S� Widjojo� R� Hull� and D� S� Wile� A speci�cational approach to merging persistent object bases�
Al Dearle� Gail Shaw� and Stanley Zdonik� editors� Implementing Persistent Object Bases� Morgan
Kaufmann� December
		��

�Wie	�� G� Wiederhold� Mediators in the architecture of future information systems� IEEE Computer�
��
�	� March
		��

�ZGHW	�� Y� Zhuge� H� Garcia�Molina� J� Hammer� J� Widom� View maintenance in a warehousing environ�
ment� Proc
 ACM SIGMOD Symp
 on the Management of Data� San Jose� California� May
		��

�ZHKF	�� G� Zhou� R� Hull� R� King� J�C� Franchitti� Using object matching and materialization to integrate
heterogeneous databases� Proc
 of Third Intl
 Conf
 on Cooperative Information Systems �CoopIS�
�	�� Vienna� Austria� May
		��

��

The Stanford Data Warehousing Project

Joachim Hammer� Hector Garcia�Molina� Jennifer Widom� Wilburt Labio� and Yue Zhuge
Computer Science Department

Stanford University

Stanford� CA ��
��
E�mail� joachim�cs	stanford	edu

Abstract

The goal of the data warehousing project at Stanford �the WHIPS project� is to develop
algorithms and tools for the e	cient collection and integration of information from heterogeneous
and autonomous sources� including legacy sources� In this paper we give a brief overview of the
WHIPS project� and we describe some of the research problems being addressed in the initial
phase of the project�

� Introduction

A data warehouse is a repository of integrated information� available for querying and analysis ���� ����
As relevant information becomes available or is modi�ed� the information is extracted from its source�
translated into a common model �e�g�� the relational model�� and integrated with existing data at the
warehouse� At the warehouse� queries can be answered and data analysis can be performed quickly
and e
ciently since the information is directly available� with model and semantic di
erences already
resolved� Furthermore� warehouse data can be accessed without tying up the information sources �e�g��
holding locks or slowing down processing�� accessing data at the warehouse does not incur costs that
may be associated with accessing data at the information sources� and warehouse data is available even
when the original information source�s� are inaccessible�

The key idea behind the data warehousing approach is to extract� �lter� and integrate relevant
information in advance of queries� When a user query arrives� the query does not have to be translated
and shipped to the original sources for execution �as would be done in� e�g�� a mediated approach to
information integration ������ Not only can such translation and shipping be a complex operation�
but it also can be time consuming� especially if the sources are many and remote� Thus� warehousing
may be considered an �active� or �eager� approach to information integration� as compared to the
more traditional �passive� approaches where processing and integration starts when a query arrives�
Warehousing also simpli�es metadata management� and it provides a trusted and long�term repository
for critical data that is under the control of the end�user�

One potential drawback of the warehousing approach is that data is physically copied from the
original sources� thus consuming extra storage space� However� given dropping storage prices and
the fact that data can be �ltered or summarized before it is warehoused� we do not believe this is a
serious problem� A more signi�cant problem is that copying data introduces potential inconsistencies
with the sources�warehouse data may become out of date� Another potential drawback is that the
�warehouse administrator� must specify in advance what sites data should be extracted from� and

��

which data should be copied and integrated� For these reasons� the data warehousing approach may
not be appropriate when absolutely current data is required� or when clients have unpredictable needs�

In reality� we believe that data warehousing should be seen as a complement� not a replacement�
to passive query processing schemes� or to ad�hoc exploration and discovery mechanisms ��� ���� For
example� ad�hoc discovery mechanisms can identify information of interest� which can can be collected
at the warehouse� improving and simplifying access to the information�

The following examples suggest some of the application areas or characteristics for which the ware�
housing approach to information integration seems well suited�

�� Collecting scienti�c data� In these applications� large amounts of heterogeneous data are created
so rapidly that real�time query processing becomes impossible� Furthermore� the sources may be
sporadic and unreliable� so that warehousing the data in a safe and convenient location for later
processing is appropriate�

�� Maintaining historical enterprise data� Processing and mining enterprise data �e�g�� computing
the sales history of all stores of a large supermarket chain over a certain period of time� is a
resource�intensive job that is better performed o
�line so as to not a
ect the day�to�day operations
of the business� Thus it is desirable to move historic enterprise data away from the mainstream
transaction processing systems where the data is created into an enterprise�owned data warehouse�

�� Caching frequently requested information� By storing in the data warehouse previously fetched
and integrated answers to frequently asked queries� the inherent disadvantages of federated
database systems �e�g�� ine
ciency� delay in query processing� etc�� can be overcome� result�
ing in improved performance and e
ciency�

In this paper we present a brief overview of the data warehousing project we are undertaking at
Stanford� called WHIPS �for �WareHouse Information Project at Stanford��� The goal of the WHIPS
project is to develop algorithms and tools for the e
cient collection and integration of information
from heterogeneous and autonomous sources� Because the project is quite new�it began o
cially in
January �����our focus in this paper is on the overall architecture of the system �Section ��� and on
some of the speci�c research issues that we have investigated to date �Section ���

� Related Research

An introduction to data and knowledge warehousing is presented in reference ����� In this book�
the advantages of the warehousing approach are put forth and a general architecture and suggested
functionality are presented� There has been a signi�cant amount of research in the database and
knowledge�base community related to the problem of integrating heterogeneous database and knowledge
bases� representative literature is ��� 	� ��� �	� � � ��� ��� ���� Much of this work uses the �passive�
approach discussed in the introduction� Some of the approaches rely on modifying the individual
databases to conform to a �global schema�� Despite these di
erences with our project� there are still
a number of similarities� e�g�� translating heterogeneous data into a common model� merging data
from multiple sources� propagating data from source to target databases� etc� Hence� we are adapting
methods from the heterogeneous database literature to the mediation and integration aspects of our
warehousing approach�

If one considers the data residing in the warehouse as a materialized view over the data in the
individual information sources� then it may be possible to adapt previously devised algorithms for view
maintenance to the problem of change propagation and warehouse updating in the data warehousing
environment� Two important di
erences with the traditional view maintenance problem are ��� the
heterogeneity of the sources� and ��� the autonomy of the sources� The second problem implies that

��

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

Client
Applications

Info
Source

Info
Source

Info
Source

Data
Warehouse

Integrator

Monitor Monitor Monitor

...

Figure �� Architecture

sources may not fully cooperate in view management� which leads to problems discussed in Section ���
below� Previously devised algorithms for view maintenance can be found in ��� �� ��� and we have built
upon these in our solutions�

The problem of monitoring individual databases to detect relevant changes is central to the area
of active databases� as represented in� e�g�� � � �� ���� We are exploiting appropriate parts of this
technology in the WHIPS project�

� Architecture

Figure � illustrates the basic architecture of our system� The bottom of the �gure depicts the multiple
information sources of interest� These sources could include imagery� video� and text data� along with
more traditional data sources such as relational tables� object�oriented structures� or �les� Data that
is of interest to the client�s� is copied and integrated into the data warehouse� depicted near the top of
the �gure�� Between the sources and the warehouse lie the �source� monitors and the integrator� The
monitors are responsible for automatically detecting changes in the source data� Whenever the source
content changes� the new or updated information that is relevant to the warehouse is propagated to
the integrator� More details on how monitors operate and how they can be implemented are provided
in Section ����

The integrator is responsible for bringing source data into the warehouse� Integrating heterogeneous
data into an existing schema is a di
cult problem requiring several steps� First� the data must be
made to conform to the conceptual schema used by the warehouse� Then the data must be merged
with existing data already present� in the process resolving inconsistencies that might exist between
the source and warehouse data� In essence� the integrator is where the di
erences across information
sources are speci�ed� where relationships among data at multiple sources are de�ned� where duplicates
and inconsistencies are detected� and where it is determined how information will be integrated into
the warehouse� More details on our approach to integration are provided in Section ����

�If feasible� the client�s� may initially choose to replicate all of the data in order to get an overview of what is available
before making a choice�

��

At the top of the �gure are the client applications that let users interact with the warehouse�
Currently we plan to provide only the basic query capabilities o
ered by any �o
�the�shelf� database
system� but additional capabilities �e�g�� decision support� data mining� etc�� can be added at a later
point if necessary�

A number of features of our planned architecture are not depicted explicitly in Figure �� For exam�
ple� although in the �gure it appears that information !ow is exclusively �upwards� �from information
sources through monitors to the integrator and �nally to the warehouse�� in reality it often becomes
necessary for the integrator to submit queries to one or more information sources in order to correctly
integrate new or updated information �see Sections ��� and ����� Also note that the �gure depicts
run�time aspects of the system only� It is our ultimate goal to provide� in addition� a powerful compile�
time component� Using this component� the desired contents of the warehouse are speci�ed by the
warehouse administrator� From this speci�cation� appropriate monitors and an appropriate integrator
are generated in an automatic or semi�automatic fashion� leading to easy and fast system con�guration
and recon�guration for a variety of client needs�

	 Currently Under Investigation

There are numerous challenges associated with realizing the architecture in Figure �� In this section
we brie!y summarize the main issues we have been addressing in the initial phase of the project�

��� Monitors

Monitors detect changes to an information source that are of interest to the warehouse and propagate
the changes in a generic format to the integrator� If the source is a full�functionality database system�
it may be possible for the monitor to simply de�ne an appropriate set of triggers and wait to be noti�ed
of changes� Another option may be for the monitor to examine the update log �le and extract the
changes of interest� In other cases� such as legacy systems� the monitoring task may be much harder�
Typically� legacy systems do not have trigger or logging capabilities �or� if such capabilities are present�
they are not available to an external component like the monitor�� In these cases� there are two options�

� Every application that changes the source data is modi�ed so it emits appropriate noti�cation
messages to the monitor� For example� the application program that creates a new patient record
for a hospital database will send a message to the monitor giving the new patient#s name� status�
and so on� Clearly� application level noti�cations are not particularly desirable� but they may
need to be used when the underlying storage system will not perform noti�cations itself�

� A utility program is written that periodically dumps the source data into a �le� and the monitor
compares successive versions of the �le� Many legacy systems already have dump utilities� typ�
ically used for backup or copying of data� Although the dump �le format is usually speci�c to
the legacy system� it often is possible to describe its �schema� in a generic way� We refer to the
problem of detecting modi�cations by comparing successive dumps as the snapshot di
erential
problem� Again� this solution is not particularly desirable� but it may often need to be used in
practice�

We are currently focusing on solutions to the snapshot di
erential problem� One simple version of
this problem is stated as follows� Each snapshot is a semistructured �le F of the form fR�� R��� � � �Rng�
where Ri denotes a row or record in the �le� Each row is �logically� of the form hK�Bi� where K is a
key value and B is an arbitrary value representing all non�key data in the record� Given two �les F�
�the old �le� and F� �the new �le�� produce a stream of change noti�cations� Each change noti�cation
is of one of the following forms�

��

�� updated�Ki�B��B��� indicating that the row with key Ki has value B� in �le F� and value B� in
�le F��

�� deleted�Ki�B��� indicating that there exists a row with key Ki and value B� in �le F�� but no row
with key Ki in �le F��

�� inserted�Ki�B��� indicating that there exists a row with key Ki and value B� in �le F�� but no
row with key Ki in �le F��

Note that rows with the same key may appear in di
erent places in �les F� and F�� The snapshot
di
erential problem is similar to the problem of computing joins in relational databases �outerjoins�
speci�cally�� because we are trying to match rows with the same key from di
erent �les� However�
there are some important di
erences� among them�

� For snapshots� we may be able to tolerate some rows that are not �properly� matched� For
example� suppose �les F� and F� are identical except F� contains the row with key K� at the
beginning� while F� contains K� towards the end� A simple �sliding window� snapshot algorithm
might see K� in F� and try to �nd it in the �rst N �say� rows of F�� Not seeing it there� it will
report a deleted row with key K�� Later� the algorithm will �nd K� in the second �le and will
report it as an inserted row� The super!uous delete and insert may create unnecessary work at the
warehouse� but will not cause an inconsistency and therefore may be acceptable� In exchange� we
may be able to construct a much more e
cient snapshot di
erential algorithm� using an approach
that cannot be used for relational �outer��join�

� For the snapshot problem� we may be able to tolerate e
cient probabilistic algorithms� For
instance� suppose the B �elds are very large� Instead of comparing the full B �elds to discover
di
erences� we may hash them into relatively small signatures� Consequently� there will be a small
probability that we will declare rows hKi� B�i and hKi� B�i to be identical because the signatures
matched� even though B� �� B�� However� a few hundred bits for the signature makes this
probability insigni�cant� and this approach lets us dramatically reduce the size of the structures
used in matching and di
erentiating rows�

� The snapshot problem is a �continuous� problem� where we have a sequence of �les� each to
be compared with its predecessor� Thus� in comparing F� to F�� we can construct auxiliary
structures for F� that will be useful when we later compare F� to F�� and so on�

We are currently experimenting with several solutions to the snapshot di
erential problem� Some
of the algorithms are similar to traditional join algorithms such as sort�merge join and hash join�
Others are similar to UNIX di
 and may not produce the minimal set of change noti�cations� The
performance of these algorithms depends largely on the characteristics of the snapshots� e�g�� whether
the �les are ordered or almost ordered� whether the keys are unique� whether the modi�cations are
restricted to inserts only� etc� We have implemented an initial� simple di
erential monitor� It takes
as input a schema speci�cation for the �les to be compared� It then analyzes the snapshot �les using
a sort�merge algorithm� sending change noti�cations to the integrator� Based on this framework� we
plan to implement and evaluate several of the other schemes discussed above�

��� Integrator

The integrator component receives change noti�cations from the monitors and must integrate the
changes into the warehouse� We are developing an approach where the integrator is implemented
as a rule�based engine� Each rule is responsible for handling one kind of change noti�cation� and is
implemented as an object�oriented method� The method is called �or �triggered�� whenever a monitor

��

generates a change noti�cation of the appropriate type� The method body then performs the necessary
processing to integrate the change into the warehouse� During this processing� the method may need
to obtain additional data from the warehouse� or from the same or other sources� For example� suppose
the warehouse keeps the average salary of employees at a company� When an update to an employee
salary is reported� the update rule will have to obtain the current average from the warehouse in order
to compute the new value� Scenarios where the integrator must obtain additional data from the sources
are discussed in Section ����

As discussed in Section �� our ultimate goal is to provide a non�procedural� high�level speci�cation
language for describing how the relevant source data is integrated into the warehouse� Speci�cations
in this language are compiled into the appropriate event processing code for the rule�based integration
engine� This approach makes the integration process highly !exible and con�gurable� and allows the
system to adapt easily to metadata changes at the sources or the warehouse�

For the initial implementation of our prototype� we are using the �CORBA compliant� Xerox
PARC ILU distributed object system ���� Using ILU allows the information sources� the monitors� the
integrator� and the warehouse to run on di
erent �distributed� machines and platforms while hiding
low�level communication protocols� and it allows di
erent components to be programmed using di
erent
languages�

��� Warehouse Update Anomalies

As mentioned in Section �� in developing algorithms for integration one can think of a data warehouse
as de�ning and storing a materialized view �or views� over the information sources� Numerous methods
have been developed for maintaining materialized views in conventional database systems� Unfortu�
nately� these methods cannot be applied directly in our warehousing environment� The key di
erence
is that existing approaches assume that the system in which changes occur is the same system in which
the view resides �or at least is a tightly�coupled related system�� Consequently� when a change occurs�
the system knows and has available any additional data needed for modifying the view�

In our warehousing environment� sources may be legacy or unsophisticated systems that do not
understand views� and they are decoupled from the system where the view is stored� Sources may
inform the integrator �through the monitor� when a change occurs� but they may not be able to
determine or obtain additional data needed for incorporating the change into the warehouse� Hence�
when a change noti�cation arrives at the integrator� the integrator may discover that additional source
data �from the same or di
erent sources� is necessary to modify the view� When the integrator issues
queries back to the sources� the queries are evaluated later than the corresponding changes� so the
source states may have changed� This decoupling between the base data on the one hand �at the
sources�� and the view de�nition and view maintenance machinery on the other �at the integrator��
can lead the to incorrect views at the warehouse� We refer to this problem as the warehouse update
anomaly problem �����

There are a number of mechanisms for avoiding warehousing update anomalies� As argued above�
we are interested only in mechanisms where the source� which may be a legacy or unsophisticated
system� does not perform any �view management�� The source will only notify the integrator of
relevant changes� and answer queries asked by the integrator� We also are not interested in� for example�
solutions where the source must lock data while the warehouse view is modi�ed� or in solutions where the
source must maintain timestamps for its data� In the following potential solutions� view maintenance
is autonomous from source changes�

Recompute the view� The integrator can either recompute the view whenever a change occurs at a
source� or it can recompute the view periodically� Recomputing views is usually time and resource

�	

consuming� particularly in a distributed environment where a large amount of data might need
to be transferred from the source to the warehouse�

Store at the warehouse copies of all data involved in views� By keeping up�to�date copies of
all relevant source data at the warehouse� queries can be evaluated locally at the warehouse
and no anomalies arise� The drawbacks are wasted storage and overhead for keeping the copies
current�

The Eager Compensating Algorithm� The solution we advocate avoids the overhead of recom�
puting the view or of storing copies of source data� The basic idea is to add to queries sent by
the integrator to the sources compensating queries to o
set the e
ect of concurrent updates� For
details and examples of the Eager Compensating Algorithm� variations on the algorithm� and
discussion of performance issues� refer to �����

We plan to implement and experiment with the Eager Compensating Algorithm� along with the alter�
native approaches� within the rule�driven integrator framework described in Section ����

� Summary and Plans

Data warehousing is a valuable alternative to traditional �passive� approaches for integrating and
accessing data from autonomous� heterogeneous information sources� The warehousing approach is
particularly useful when high query performance is desired� or when information sources are expensive
or transitory�

The initial WHIPS project testbed installed in our laboratory uses for its data warehouse a Sybase
relational DBMS� We are currently using data from our University accounting system� which is supplied
to us as large legacy snapshots� As described earlier� we are experimenting with simple monitors that
compute changes between consecutive snapshots� We also are in the process of implementing the
integrator component� using ILU objects as the communication infrastructure between the monitors
and the integrator� and between the integrator and the warehouse� Since we have not yet developed
our high�level integration description language� event processing code is currently �hard wired� into
the integrator�

In addition to the work in progress described in Section �� plans for the near �and not so near�
future include�

� Migrate to a larger and more heterogeneous testbed application� most likely �nancial data from a
variety of sources including subscription services� monthly transaction histories� World�Wide�Web
sites� news postings� etc� The heterogeneity of the sources in this application will provide impetus
for experimenting with a wide variety of monitor types and will provide additional challenges for
the integrator�

� Extend our work on snapshot di
erential algorithms to handle dump �les with nested�object
structures in addition to !at record structures�

� Develop and implement algorithms that optimize the change propagation and integration process
in our warehousing architecture� In particular� we would like to perform �ltering of changes at the
monitor level that is as sophisticated as possible� so that we can avoid overloading the integrator
with change noti�cations that are discovered to be irrelevant to the warehouse� Conversely� we
may �nd it useful to store certain additional data at the warehouse� so that we can eliminate the
need to query the sources when a change noti�cation occurs�

� Develop an appropriate warehouse speci�cation language and techniques for compiling speci�ca�
tions into integration rules and appropriate monitoring procedures �recall Sections � and �����

�

References

�
� S� Abiteboul and A� Bonner� Objects and views� In Proceedings of the ACM SIGMOD International
Conference on Management of Data� pages ���
���� Denver� Colorado� May
		
�

��� T� Addyman� WAIS� Strengths� weaknesses� and opportunities� In Proceedings of Information Networking
���� London� UK� May
		��

��� E� Bertino� A view mechanism for object�oriented databases� In Advances in Database Technology�EDBT
���� Lecture Notes in Computer Science 	��� pages
��

�
� Springer�Verlag� Berlin� March
		��

��� N� Cercone� M� Morgenstern� A� Sheth� and W� Litwin� Resolving semantic heterogeneity� In Proceedings
of the Sixth International Conference on Data Engineering� Los Angeles� California� February
		��

��� S� Ceri and J� Widom� Deriving production rules for incremental view maintenance� In Proceedings of
the Seventeenth International Conference on Very Large Data Bases� pages ���
��	� Barcelona� Spain�
September
		
�

��� S� Ceri and J� Widom� Managing semantic heterogeneity with production rules and persistent queues� In
Proceedings of the Nineteenth International Conference on Very Large Data Bases� Dublin� Ireland� August

		��

��� S� Chakravarthy and D� Lomet� editors� Special Issue on Active Databases� IEEE Data Engineering Bullet
in
����� December
		��

��� A� Courtney� W� Janssen� D� Severson� M� Spreitzer� and F� Wymore� Inter�language uni�cation� release

��� Technical Report ISTL�CSA�	���
��
 �Xerox accession number P	��������� Xerox PARC� Palo Alto�
CA� May
		��

�	� U� Dayal� Active database management systems� In Proceedings of the Third International Conference on
Data and Knowledge Bases� pages
��

�	� Jerusalem� Israel� June
	���

�
�� U� Dayal and H��Y� Hwang� View de�nition and generalization for database integration in a multidatabase
system� IEEE Transactions on Software Engineering�
��������
���� November
	���

�

� J� Hammer� D� McLeod� and A� Si� Object discovery and uni�cation in federated database systems� In
Proceedings of the Workshop on Interoperability of Database Systems and Database Applications� pages
�

�� Swiss Information Society� Fribourg� Switzerland� October
		��

�
�� E�N� Hanson and J� Widom� An overview of production rules in database systems� The Knowledge Engi�
neering Review� �����
�

��� June
		��

�
�� W�H� Inmon� Building the data bridge� the ten critical success factors of building a data warehouse�
Database Programming � Design�
		��

�
�� W�H� Inmon� EIS and the data warehouse� a simple approach to building an e�ective foundation for EIS�
Database Programming � Design� ��

����
��� November
		��

�
�� W�H� Inmon and C� Kelley� Rdb�VMS
 Developing the Data Warehouse� QED Publishing Group� Boston�
Massachusetts�
		��

�
�� W� Litwin� L� Mark� and N� Roussopoulos� Interoperability of multiple autonomous databases� ACM
Computing Surveys� ���������
�	�� September
		��

�
�� Y� Papakonstantinou� H� Garcia�Molina� and J� Widom� Object exchange across heterogeneous information
sources� In Proceedings of the Eleventh International Conference on Data Engineering� Taipei� Taiwan�
March
		��

�
�� A� Sheth and J� Larson� Federated database systems for managing distributed� heterogeneous� and au�
tonomous databases� ACM Computing Surveys� ������
��
���� September
		��

�
	� G� Wiederhold� Mediators in the architecture of future information systems� IEEE Computer� ��������
�	�
March
		��

���� G� Wiederhold� Intelligent integration of information� In Proceedings of the ACM SIGMOD International
Conference on Management of Data� pages ���
���� Washington� DC� May
		��

��
� Y� Zhuge� H� Garcia�Molina� J� Hammer� and J� Widom� View maintenance in a warehousing environ�
ment� In Proceedings of the ACM SIGMOD International Conference on Management of Data� San Jose�
California� May
		��

��

acm PODS

acm

1996

SIGMOD

Call for Papers

ACM SIGMOD�PODS �� Joint Conference

Le Centre Sheraton� Montreal� Canada

June ���� ����

The ACM SIGMOD�PODS ��� Joint Conference will� once again� bring together the SIGMOD and PODS conferences
under one umbrella� The two events will overlap for two days to form a joint conference� but each will have a separate
third day without overlap� There will be only one registration process for the joint� four�day conference� SIGMOD
and PODS will have separate program committees and will have separate proceedings�

Authors must submit their papers to the conference that they feel is most appropriate for their work� We recommend
that applied papers be submitted to SIGMOD and theoretical ones to PODS� The same paper or di�erent versions of
the same paper should not be submitted to both conferences simultaneously� Attendees will receive both proceedings
and be encouraged to attend sessions in both conferences� Some of the technical events and the lunches will be joint
events�

Submission Guidelines

All submissions are due on October �	�
���� All submissions should be directed to the appropriate program chair�

H�V� Jagadish
Re� SIGMOD ���� Richard Hull
Re� PODS ����
�T���� AT�T Bell Labs� Computer Science Department� ECOT ���
��� Mountain Avenue University of Colorado
Murray Hill� NJ ����� Boulder� CO ��	�����	�
USA USA
E�mail� sigmod���research�att�com E�mail� hull�cs�colorado�edu
Fax�
���� �������� Fax�
	�	� ��������

The address� telephone number� FAX number� and electronic address of the contact author should be given on the
title page of the submission� All authors of accepted papers will be expected to sign copyright release forms� and
one author of each accepted paper will be expected to present the paper at the conference� Proceedings will be
distributed at the conference� and will be subsequently available for purchase through the ACM�

For SIGMOD submissions� Please submit six copies of an ���� word original manuscript to the program chair�
In addition� submit by electronic mail� in clear text
no postscript� no Latex�� an abstract of no more than ��� words�
along with the title� authors� and the track
research or experience� for which the paper is being submitted� The
FIRM deadline for the submission of electronic abstracts is October ��� ����	 The full paper should
still be sent as hard copy� If you do not have access to electronic mail� please contact the program chair to make
alternative arrangements for submission of the abstract�

For PODS submissions� Please submit twelve copies of a detailed abstract
not a complete paper� to the program
chair by October �	�
���� No papers received after October 	��
��� will be considered� This is a FIRM deadline	

A limit of
� typed pages with roughly 	� lines�page
about ���� words or
�K bytes in total� is placed on submissions�
Font size should be at least
� points�

For up�to�date information about the Joint Conference� consult the SIGMOD�PODS Web page that is set up�
URL�http���web�cs�ualberta�ca��database�sp���info�html�

IEEE Computer Society
� �� Massachusetts Ave� NW
Washington� D�C� ����	�����

Non�pro�t Org�
U�S� Postage

PAID
Silver Spring� MD

Permit ����

