
Autocalibration for Virtual Environments Tracking Hardware*

Stefan Gottschalk John F. Hughes
Computer Science Department Computer Science Department
University of North Carolina Brown University

Chapel Hill, NC Providence, RI
gottscha@cs.unc.edu jfh@cs.brown.edu

Abstract

We describe two instances in which precise mechanical calibration
of virtual environments equipment has been replaced by automated
algorithmic calibration through software that encapsulates the
hardware design and uses a goal-based approach to adjust
calibration parameters. We describe a back-projection system for
adjusting the assumed locations of beacons in a head-mounted
display tracking system; the calculated errors in the navigation
system are used to compute adjustments to the beacon positions to
reduce such errors. In a second application, a piggyback head-
tracking/hand-tracking system is calibrated by a similar reduction
of computed errors.

CR Categories:  I.3.m [Computer Graphics]: Miscellaneous; I.3.7
[Computer Graphics]: 3-dimensional Graphics and Realism —
Virtual Reality; I.4.8 [Image Processing] Scene Analysis —
Photometry

Additional Keywords: Vir tual  environments,  t racking,
autocalibration.

1  Introduction

A number of calibration issues for virtual environments (VE)
hardware are approached with standard engineering techniques in
which the accuracy of the calibration is directly dependent on the
accuracy of the assemblies in the VE machinery. This approach is
successful to a degree but has several drawbacks. First, it makes the
machinery very sensitive to rough handling. Second, frequent
realignment may be required, which may be time-consuming and
may be necessary so frequently that extended use of the equipment
becomes impossible. Third, modifications of the machinery
become very difficult.

We therefore take a goal-based approach to these problems,
applying methods learned in computer graphics to solve
engineering problems. Instead of requiring precise calibration of
parts, we ask the systems to autocalibrate, a notion that was inspired
in part by the auto-assembling systems of Barzel and Barr [BB88]

but which first appeared in Wang’s dissertation [Wan90]. This
allows us to write a program encoding the design of the system that
uses the system’s observations to adjust itself.  Since realignment
can sometimes actually be done while the machinery is in use,
rather than in a separate calibration phase, the first and second
problems above are reduced. And because the software that
implements the autocalibration encodes the intent of the design, the
mechanical design can be modified in parallel with software
modification, helping to reduce the third problem. In this paper, we
discuss two sample applications: calibration of a head-tracking
system and of a piggyback hand tracker attached to the head-
tracking unit.

We stress that the techniques here serve the general goal of
head-tracking. The current interest in Virtual Reality, evidenced by
the attention it has attracted in both the technical literature and the
media, may well have led to unjustified expectations. There is a
belief that “any day now” the technology will become available.
But there are three substantial obstacles: (1) for comfort, the units
need small, high-resolution displays; (2) graphics hardware must be
capable of real-time, low-latency image generation; (3) a low-
latency, high-accuracy system for head tracking in unprepared,
possibly-noisy environments is necessary. We are addressing the
third of these issues.  There is as yet no tracking system that is
lightweight and works in unprepared environments and in large
spaces. As far as we know, no one has demonstrated a working
head-tracking system for a room-sized environment (about 15' x
15'). The ceiling tracker described here is a start: the environment is
large and expandable and the equipment, although heavy, is
bearable.  We envision an eventual system in which methods
similar to those described here are used to calibrate the system’s
view of its environment. The algorithms may differ, but the
principle — having the system model its sources of error and
calibrate itself against them — will remain.

We wish to make one more point: the two examples presented
in this paper give details of a general principle, and this general
principle is applicable to cases other than the ones we describe. In
short, as one designs a tracker (or other electro-mechanical
assembly), one has the opportunity to leave some physical
parameters fixed but unknown, and to then determine their exact
values after construction. Doing this kind of post-construction
calibration does, however, require that some aspects of the system
be overdetermined. In the head-tracker example below, we could
not have performed autocalibration if the tracker computed its
position from just three LED beacons, since there would be no
“error measure” as we computed the position — the equations
would be exactly determined rather than overdetermined.
Similarly, without multiple samples in the hand-tracking
application, we could not determine the orientation matrix. So the
principle is this: if one wishes to use autocalibration, the system
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must have a surplus of information and a way to measure whether
this information is internally consistent. The cost of obtaining this
surplus of information is a design tradeoff, and should be
considered during the design rather than after.

2  Operation of the Ceiling Tracker

Most current head trackers achieve a large working volume at the
expense of accuracy and precision.  However, some virtual
environments applications require a large working volume and
some minimum tracking precision.

A team at UNC-CH has developed an optoelectronic tracking
system capable of tracking head motion with precision of
approximately 0.2 degrees orientation and 1 mm translation. (A
description of this system and its design can be found in the
references [WAB+92][WAB+90]). System accuracy has not been
measured precisely, but has been found to be very adequate for the
purposes of head-mounted display (HMD) applications.  At
present, the working volume is a 10' by 12' area, but the tracking
area can in principle be expanded arbitrarily by adding LED-
studded ceiling panels.

The method used by the optoelectronic tracker is conceptually
similar to celestial navigation.  A mariner observes the angles
between some number of stars and the horizon, and then, knowing
the stars’ locations in the heavens, determines the vessel’s position.
Similarly, we observe a number of ceiling-mounted infrared LEDs,
and knowing their positions, we compute the location (and
orientation) of the head-tracking unit.

To be more precise, we have a helmet with cameras mounted on
it. Some of the ceiling LEDs are rapidly flashed in a known
sequence, and each one is possibly sighted by a camera.  The choice
of subset and sequence is not preset, but is determined “on the fly”
as it is learned which LEDs are visible to which cameras. The
cameras are lateral-effect photodiodes with lenses, and each can
report the centroid of a spot of light that strikes its surface. The
centroid’s location is reported in image plane coordinates, x and y.
We call these photocoordinates (see Figure 1).

The placements of the cameras on the helmet are known, as are
the locations of the principal points of the lens systems and the
placements of the photodiodes’ image planes within the camera
casings. Thus, when the camera reports the photocoordinates of
LED image on its image plane, we can compute the line, in head
space, along which the LED must lie.  We call this line a back-
projection, because it is the result of projecting the ray from the
photodiode back through the lens system and outward.

Now, given several back-projections in head space, and given
the true locations of the LEDs in world space, where must the head
be in world space so as to cause the back-projections to pass
through their respective LEDs?  With three (sufficiently general)
back-projections, an unique solution can be found. With more than
three, we have an overdetermined system and we compute a best fit
according to a least-squares criterion, using a method called “space-
resection by collinearity” (abbreviated “CA” for “collinearity
algorithm”). We briefly describe CA in Section 3.1; full details can
be found elsewhere [AW91]. Several questions about this tracker
design that are often raised are discussed in an Appendix.

3  Explaining the Problem

The current design uses an adjustable superstructure to support the
ceiling panels.  The adjustments are needed because any
conceivable support structure would bend under the loading of the
panels, giving an undesirable curvature to the ceiling’s surface.

With the current design of 10' by 12' (30 2' by 2' panels), the
leveling process requires about 90 minutes of operator time, with
specialized equipment.

We plan to build another,  larger ceiling without this
superstructure. The panels will be of the same size, but will drop
directly into the standard ceiling grid, replacing the acoustic tiles
found in many buildings.  This ceiling will be 18' by 30'; the
expense of a comparable-size superstructure is prohibitive, and
leveling time would be several hours.

Standard ceiling grids are by no means flat, and we have
therefore developed the autocalibration technique described here to
determine the location of the LEDs after the panels are installed.
Before describing that technique, however, we give more details of
the collinearity algorithm.

3.1  The Collinearity Algorithm

The collinearity algorithm (CA) works by observing many
(typically 10 to 20) LEDs and then computing a best estimate of
headmount position and orientation.  When an LED shines onto a
photodiode, the photodiode reports the centroid of the LED’s image
on its face.  Since the algorithm knows the headmount geometry, it
is able to compute, in head space, where the back-projection
emerges and in what direction it is pointed.  Somewhere along this
back-projection lies the LED (see Figure 2).

Thus

R( p + λd) +h = t , λ > 0 (1)

where t the is location of the LED in world space, R is the matrix
that takes vectors in head coordinates to world coordinates (i.e., R
defines the orientation of the head-mount), h is the world-space
coordinates of the origin of the head-mount coordinate system; and
p and d are the basepoint and direction (unit vector) of the back-
projection ray in head-coordinates; λ is the distance from the
camera to the LED.

Equation 1 actually consists of three scalar equations, one for
each of the x-, y-, and z-components.  We can solve the z component
for λ and substitute this into the x a n d  y components.  This
eliminates λ and leaves us with two scalar equations in the
unknowns R and h.

Many LEDs are seen at the same moment.  Each of these
generates two scalar equations. So each observation, which sights
12 to 20 LEDs, constructs a system of 24 to 40 equations in the
unknowns R and h.  CA seeks those values of R and h that minimize
the residuals of these equations in the least-squares sense.  These
values are found by applying a multidimensional Newton’s
method.

Figure 1: The geometry of the head-tracking system.
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solution for the location of the headmount at each of these
thousands of observations is likely to be rather bad: the sum of
squares value will be large. To return to the marine analogy, it is as
though the several circles of positions on the earth, each determined
by a single star, failed to intersect at a single point, and instead
intersected pairwise at several different points that surrounded a
large region. The mariner estimates the vessel’s position as
somewhere at the center of the region, and begins to doubt the
accuracy of the almanac’s star locations.

After this initial set of observations, we derive the back-
projections from each of these computed headmount locations, to
yield “sightings” of the LEDs from roughly known positions.  An
LED sighted from several positions should be located at the
intersection of the back-projections extending from those positions,
but in general, the back-projections do not come together at a point,
but tend instead to cluster in a particular region.  We therefore
adjust our estimate of each LED to be closer to this back-projection
cluster.   (The mariner,  after several sets of inconsistent
observations, decides to correct the almanac). This is the second
step of our autocalibration.

After we adjust all the LEDs, the old observation positions are
no longer optimal solutions in CA.  So, we apply CA again to the
observation positions, using the same data as before, but with the
new beacon location estimates. (The mariner re-computes the
vessel’s position on each of the previous days, and now has circles
of position that come closer to intersecting at single points). Thus
we repeat the first step. We now continue, alternating between the
two steps in this fashion, adjusting first one set of parameters and
then the other, until we have settled to some configuration.

It seems surprising at first that this process converges at all; it is
even more surprising to see how fast and how accurately it
converges. We tested this by perturbing three of the ceiling panels
as shown in Figure 4, and then running the algorithm.  The average
error-vector magnitudes for the first five full iterations were 13.1
mm, 4.7 mm, 3.2 mm, 2.5 mm, 2.2 mm, and 1.9 mm.  After 20
iterations, which takes about two hours for 25,000 observations, the
average error vector is down to 1.1 mm.  Figure 5 is a computer-
generated picture of the tracker ceiling. The beacons on the tilted
panels are clearly visible.

The adjustment made to an LED’s location depends on its
relationship to the back-projections associated with it.  A back-
projection, in general, passes nearby the LED’s estimated location.
The vector drawn from the LED’s estimated position to the back-
projection’s closest approach to that position is the error vector for
that back-projection.  A given LED has many back-projections, for
each of which there is an associated error vector.  We average these
error vectors, and use this average as the adjustment to the LED’s
estimated position.

In a sense, each observation of an LED “votes” in the
adjustment.  An observation typically sees many LEDs, and cannot
find a position from which to spear all its LEDs with its back-
projections.  The smallest adjustment possible for each LED that
would completely satisfy an observation’s collinearity conditions,
would be an adjustment along the error vector.  However, such an
adjustment might conflict with the adjustment required by another
observation.

The averaging is thus done as a compromise among the needs of
the various observations that sight a given LED. It is possible to
determine a new position for the LED that actually minimizes the
sum of the squared lengths of the error vectors, but it  is
computationally expensive, and the averaging method works well
and fast in practice.

4.1  Concerns About Noise: the Method in Practice

The autocalibration method was originally tried with simulated data
so that it could be evaluated in the absence of noise and other
complicating factors.  It was found to be quite effective, providing

The method is most successful when given an initial guess very
close to the optimal solution.  In practice, this is easy to supply.  The
optical tracker typically provides updates every 12 to 20
milliseconds, and a person does not move far in that interval.  Thus,
for the initial guess, the algorithm merely uses the value of the
previous update, which is guaranteed to be close.

4  Autocalibration: Rationale and Description

We have pointed out that it is very desirable to be able to construct
the ceiling with loose tolerances, and be able to determine the
locations of the LEDs afterward.  CA does not depend upon any
particular configuration of LED beacons — all places are alike to it.
It does, however, require an exact knowledge of the locations of the
LEDs, wherever they may be.

An “engineering” approach to achieving agreement between
the physical geometry of the beacons and their software
representation is prohibitively expensive.  Therefore, we sought a
way to determine the locations of the LEDs using existing hardware
and some numerical processing.

The collinearity algorithm was derived from photgrammetric
methods. Our LED calibration method, which makes use of CA as
one step, was based primarily on influences from mathematics and
computer graphics rather than the photgrammetry literature. We
have since learned, however, that our approach has parallels in that
literature, although we have found no exact analog. Nonethless, we
strongly recommend that others working on optical tracking
systems consult the photogrammetry literature [Sla80] for many
ideas which, with slight modifications, may prove valuable in
tracking.

We begin with an estimate of the beacon locations.  We then
take several thousand headmount observations (collecting 25,000
observations takes about 45 minutes) from a variety of positions,
and use CA to “fit” the position of each observation to its beacon
data.  Of course, we know only approximately where the LEDs are,
but fitting the headmount position to the beacon data allows some
of the error in the beacon location estimates to cancel. The CA

Figure 2: The back-projection ray from the camera towards the
ceiling.
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rapid convergence. Performance on real data was not nearly as good
- for reasons we now discuss.

First, the photodiode readings are noisy.  The photocoordinates
have as much as 12 microns of uncertainty.  If the LED is a meter
away from the camera, which has a 50-mm lens, the back-
projection will miss by more than .25 mm even if headmount’s
position and orientation are exactly correct.

Second, the system of equations produced by each observation
assumes that the LEDs are sighted simultaneously, and this is not
true in practice.  The LEDs are sampled in sequence, and each
sample may take as much as a millisecond.  If the user’s head is
turning at the (reasonable) rate of 180 degrees per second, the LED
is 1 m. away from the axis of rotation, and 20 LEDS are sampled for
the observation, then in the 20 milliseconds of sampling, the back-
projection to the first LED may have traveled 6 cm.  This causes the
system of equations given by the observation data to be
inconsistent, so that it cannot be satisfied by any position and
orientation. The fact that the equations cannot be satisfied implies
that the back-projections are simply wrong, and hence will “pull
on” the LEDs wherever the observation settles.

Third, acquiring the right spatial distribution of observations is
surprisingly difficult.  The LEDs in the corner of the ceiling are
typically seen in many fewer observations than the ones in the
center. And when the LEDs in the corner are seen, it tends to be
from one direction.  Naturally, an LED in the corner can be seen
only from one octant: below ceiling height and beneath the ceiling.
But diversity in the angles from which the LED is seen is helpful.  If
an LED is seen from within a narrow cone of positions, then the
location of the back-projection cluster is more sensitive to the errors
mentioned earlier: a slight distortion in the back-projections’
placement tends to disperse the cluster, denying the LED a strong
centering influence.

Three observations can be made about the first source of error.
First, in addition to using superior photodiodes and electronics, the
error can be reduced by using lenses of longer focal length.  With
longer focal lengths, the 12-micron error in the LED image location
would t ranslate  to  an even narrower error  cone for  the
corresponding back-projection.  The primary disadvantage of the
resulting small fields of view is that they can slip between the LEDs
and fail to see any at all.  Second, one can allow the headmount to
sit still, accumulating photocoordinates, and average them over
time to distill a more accurate reading.  Unfortunately, with
thousands of observations required, data acquisition for calibration
would be very time-consuming.  Third and most important,
however, sensor noise error is insignificant in comparison to the
other two sources of error.

The second source of error comes from the motion of the
headmount. Again, for calibration purposes, we could take data
points only when the headmount is still.  But this again would make
data acquisition intolerably slow.  In practice, we have found that
moving the headmount slowly helps substantially in reducing this
error. A better solution is to change the system of equations to take
into account the headmount velocity, both linear and rotational.
This would require a minimum of six LEDs per observation to
obtain a fully-determined system, but typical counts are already 12
to 20 LEDs per observation.  This is future work.

The third problem is being addressed by an graphics application
that assists in data acquisition.  A top view (map) of the ceiling is
displayed on a nearby workstation, on which LEDs presently
observed are marked.  (This is needed because the LEDs emit
infrared light, invisible to the naked eye.)  The least-sampled LEDs
are marked in a different color, allowing the operator to direct his
efforts to sighting those LEDs. During the calibration process, in
addition, certain LEDs are identified as having unusually large
error vectors, meaning that their associated back-projections do not
cluster tightly enough.  A second run of data collection can be
made, and special attention paid to these trouble spots.

In addition to the precautions and program assistance

mentioned above, the calibration algorithm tests for high error
vectors and culls out observations for which CA cannot find a
satisfactory solution.  (This is similar to computing robust statistics
by eliminating outliers.) In this way, the algorithm is made
somewhat more tolerant of operator mistakes or wild readings from
the sensors (which are very rare).

Two features of the automated calibration method have not yet
mentioned. First, the ceiling tracker is in frequent use.  We can
simply collect the observations during use and use these in an off-
line calibration computation, so that we can keep the tracking
system aligned without downtime. At present the system does not
need frequent recalibration, and we do separate calibration runs,
allowing us to collect only “good” data (i.e., data taken with slow
head motion). Second, the entire algorithm is subject to a kind of
systematic error: if we apply a rigid motion to our estimates of the
beacon locations, CA converges exactly as well as before.  This
means that if one wishes to calibrate the system in absolute
coordinates (relative to some frame of reference for the room in
which the ceiling tracker sits), one may have to apply a rigid motion
to the computed beacon positions so taht the estimated locations of
a few key beacons are their actual positions as determined, for
example, by measurements from the walls of the room.

5  Using a Headmounted Magnetic Tracker for
Handtracking

Although the optical tracker gives satisfactory accuracy over a large
working volume, its design does not lend itself to hand tracking for
several reasons: the bulkiness of the cameras, the geometry of the
situation (the user’s body may obscure the hand’s “view” of the
ceiling, and the hand may not be held upright), and the dynamic
range requirements on photodiode sensitivity (because of changing
distances from the ceiling).  We have found, however, that
magnetic trackers [RBJ79] usually provide satisfactory
performance within a small tracking volume, although in our
environment they report significantly distorted position and
orientation outside of a range of about five feet.  Since one’s hands
never get farther than a few feet from one’s head, we decided to
place a magnetic source on the headmount and track hand motion
from there.

Ultimately, however, we want to know the hand’s location in
the ceiling coordinate system.  The optical tracker reports the head
location in ceiling space, the magnetic source lies at some fixed
location in head space, and the Polhemus tracking system reports
the hand’s location in source space.  We compose the change-of-
coordinate transformations among these three systems to get the
hand’s location in ceiling space.

Of course, the fixed location of the magnetic source within head
space must be known before we can compose the transforms. As
before, we have two choices: engineering, i.e., careful placement of
the source on a precise rigid mount attached to the headframe, and
autocalibration, in which we place the source approximately and
then infer its position precisely using autocalibration. We chose the
latter approach.

5.1  The Calibration Problem and Solution

We attach the magnetic source to the headmount with a rigid
Plexiglas framework whose position is known within a few inches,
and whose orientation is easy to measure within about 10 degrees.
These are clearly not adequate measurements: if the hand is held 3'
from the source, a 1 degree error in the measurement of the source’s
orientation would cause a 15 mm error in the computation of the
hand’s placement.

Our calibration approach is simple.  We take simultaneous
optical tracker and magnetic tracker readings, and use them to
recover the placement of the source within head space.  The
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algorithm starts with a very approximate estimate of the source’s
placement, such as might be obtained by inspection.

We start by fixing the Polhemus sensor at some location in
ceiling space.  The exact location is not important — it need only
stay still.

Now consider what should happen (if the system were
calibrated properly) as the headmount moves about in the proximity
of the sensor. We receive readings from the optical and magnetic
trackers.  The optical tracker produces the Ceiling-from-Head
transform, and the magnetic tracker provides the Source-from-
Sensor  transform.  If the Head-from-Source is correct, then the
composition of these transforms, Ceiling-from-Head × Head-from-
Source × Source-from-Sensor, should remain constant and should
be the Ceiling-from-Sensor transform, which is constant (because
the sensor is not moving) (see Figure 3).

If, for observation i,  Ri  is the reported Ceiling-from-Head
transform, T i is the reported Source-from-Sensor transform, S is
the unknown but fixed Head-from-Source transform, and M is the
unknown Ceiling-from-Sensor transform, then for any pair of
reports from the trackers,

Ri STi = M,

provided the trackers are accurate. But if S is wrong, then as we
walk around the room, the sensor’s position and orientation (i.e.,
M), as computed by the transform composition, will drift, appearing
to be in different places, depending on where we are standing.

After n readings from n different places, we have a system of n
equations,

Ri STi = Mi , i = 0…n− 1,

where S is our (incorrect) estimate of Head-from-Source, and each
Mi  is computed as Ri STi . We seek the value of S that will make the
Mi ‘s equal (i.e., the value of S that keeps our reports of the sensor
positions and orientation constant).

Our estimate of S and the readings Ri  and T i give rise to many
estimates of the sensor location Mi .  We might get closer to the true
value of M by taking some compromise among the Mi ‘s, say, by
estimating that it is the average of the Mi ‘s. We actually bias this
average slightly by averaging the matrix entries, and then
performing the Gram-Schmidt process on the rotational part of the
matrix. This averaging and orthonormalization step is likely to
prompt objections, which we address below. For now, we continue
with our description of the algorithm.

Let’s call this resulting average transform Q.  If we imagine that
this is the correct value for the sensor location, then we can write the
system

Ri STi = Q, i = 0…n − 1,

If Q really were the correct location, then we could take any one of
the equations Ri STi = Q  and solve for S to recover that value, since
the remaining transforms would be known.  However, when we
actually do this we find that we get different values for S.  Why?
Because Q is not correct — but it might be close.  Solving for S gets
us

S i = Ri
−1QTi

−1 , i = 0…n −1,

each of which suggests a different value for S.  We average these in
exactly the way we did the Mi ‘s to arrive at a new estimate for S.

This completes one iteration of the algorithm.  With our new
estimate of S we go back and acquire new Mi ‘s, which we average
to get Q, which we substitute back into the system so we can solve
for the S_i’s, which we average to get our new S.  We iterate until
the value of S stabilizes.

5.2  Justification for averaging matrices

Averaging makes sense for points in a linear space like a plane, but
we are trying to use it in a nonlinear space (the set of 3 by 3 rotation
matrices). But in general, the average of a set of points on a non-
linear space like a sphere is almost always a point that is not on the
sphere.  Even so, if all the points are very close together on the
sphere, this averaging yields a point that is near to a point on the
sphere that one might call the “average.” The reason is that the local
geometry of the sphere is well approximated by any of the tangent
planes within the local region, and so the sphere-based averaging is
a close approximation to the tangent-plane averaging.  Since the
average of the sphere points does not lie on the sphere, however,to
get a meaningful average we must project back onto the sphere. The
critical properties of the projection map here are (1) it is continuous
in a neighborhood of the sphere, and (2) for points already on the
sphere, the projection is the identity. We now explain why the
process we used in averaging matrices is analogous.

The set Q of 4 by 4 translation-and-rotation matrices is a subset
of R16 ; it is curved in much the same way that the sphere is a
curved subset of R3 . We can average a collection of points on the
object Q (i.e., several matrices), in much the same way as we
averaged points on the sphere. Before this can make sense, though,
we must honor the restriction that the points being averaged should
be close to one another. And the same caveat applies: the R16 -
average of a set of points in Q is not likely to lie in Q, and will need
to be projected back to Q, which is what the Gram-Schmidt process
does. Note, though, that the Gram-Schmidt process has the same
properties as radial projection: it is a continuous function of the
entries of the matrix (at least for matrices that are close to rotation
matrices), and for a rotation matrix, the Gram-Schmidt process does
nothing.

Figure 3: The geometry of the composite tracker during two
different observations. The source is held fixed in the head-
mounted-display coordinate system, and the sensor is fixed in the
world coordinate system, but the relationship of the head to the
world and of the sensor to the course change with each observation.
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Still, there remains the question, “How small a region must the
points be gathered in for averaging to make sense?” On the sphere,
it certainly makes sense when all the points are contained in some
hemisphere. For matrices, the averaging of the translational part is
simply an average in a linear space, and needs no justification; for
the rotational part, we believe (but have not proved formally) that
the averaging process makes sense for any collection of (rotation)
matrices A_i for which all the inner products zij = trace(Ai A j

t )  are
greater than 1/2. In practice, however, our matrices are all quite
close to one another, and these inner products are large.
Furthermore, the algorithm in practice is far more robust than we
had expected. In a 2D simulation of the problem, for example, it
takes some effort to give an initial estimate of the matrix S that
makes the algorithm diverge.

5.3  Noise in the data, and the algorithm in practice

The accuracy of this method depends on the accuracy of the
trackers providing the data.  The optical and magnetic trackers,
providing the Ri s and T i‘s are noisy.  In general, no choice of S
and M satisfies all the equations simultaneously.  It is impossible to
determine what the correct values are, and we can only hope to get
an approximation to the correct S. Nonetheless, the error in the
estimates of S and M, since they are based on multiple samples,
should average out the random noise from the trackers. The
systematic noise (e.g., one tracker always reports a slightly scaled x-
coordinate) is not averaged out, but is also inherent in the system; if
such systematic noise were too large, the system would be unusable
in practice. Our experience is that the values of S and M converge
quite rapidly to values that provide quite good hand-tracking.

There is one important observation about this instance of
autocalibration: the sensor readings from which the calibration is
done must be in fairly general position. In some cases, for example
if the orientation of the headmount remains constant throughout the
sampling process and the headmount is translated only along a
single axis, then a little linear algebra shows that the estimates of S
and M can all be identical but nonetheless be incorrect.  But if the
headmount is tilted and translated about all three axes during data
gathering, and if multiple tilts and translations about each axis are
included, then the equations will be sufficiently general to
guarantee convergence (given a good enough initial estimate of S).

5.4  Remarks on the Method

One nice aspect of this method is that no exact measurements are
needed.  The location of the sensor somewhere in lab space may
remain unknown.  The position of the source in head space need
only be estimated — and that is the only measurement necessary:
the rest of the information is taken directly from the tracker sensors
themselves.

The calibration procedure takes about 20 minutes in all: 5
minutes to put the sensor in place and gather data, and about 15
minutes (including graphical display of progress at each step) to
settle on a value for S.

The number of equations and the “tightness” of the cluster of
estimates can give a feel for the accuracy of the estimate.  In
averaging the S i ‘s, we can compute a residual for each, that is the
magnitude of the deviation from the average S i  (deviation, here,
being the difference in the translation components of the
transforms).  The angular deviation could be treated in precisely the
same manner:  the angle of rotation required to get from one
transform’s orientation to the other’s.  The root mean square of
these residuals can be used as a reasonable metric for the
“tightness” of the estimates of S.  In a typical calibration run of 25
measurements, the RMS value of the deviations from the mean S i
was about 4.6 millimeters.

These residuals are not the same as the error in the result,
although they are related.  The more equations we use, the more
likely the resulting transform is to be close to the actual one.  This is
somewhat like averaging a random variable — the variance can be
very high, but the longer we average, the closer we are likely to get
to the expected value.

6  Conclusion

We have described two applications of a goal-based approach to
alignment of mechanical systems in VE tracking. In both cases, the
automated calibration simplifies the construction of the systems,
and makes it easier to modify the systems without extensive
redesign of hardware or software. Note that the autocalibration
system is designed to calibrate against a particular source of error,
LED position error in the first case and Polhemus source location
error in the second. Other sources of error in the system will
confound the autocalibration process, so that if they are persistent
enough, the autocalibration model should be revised to incorporate
them as well. As the number of variables to be calibrated is
increased, the number of observations must increase as well, of
course, but in the head-tracking system, we have calibrated about
3000 variables successfully.
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Appendix: Head Tracker Design

Several issues concerning our current tracker design are often
raised by those unfamiliar with it. First, why use exotic, expensive
lateral-effect photodiodes instead of the highly developed,
inexpensive CCD technologies?

The reason is timing.  We want updates from the tracking
system every 12 to 20 milliseconds. With CCDs, both the
bandwidth required for data transfer and the image processing
necessary per frame were prohibitive. We found it more feasible to
digitize the voltages coming from the lateral-effect photodiodes
(the only thing of interest after all in the image that a CCD camera
would have seen) and transmit this comparatively low bandwidth
signal.

Second, why use multiple cameras with narrow fields of view?
Why not use a single camera with a wide-angle lens?

T h e  p r o b l e m  h e r e  i s  t h e  l i m i t e d  p r e c i s i o n  o f  t h e
photocoordinates.  We have observed that, in practice, the
photocoordinates reported by the camera may be off by as much as
12 microns. A narrow field of view helps reduce this problem, but
since CA requires disparate angles to operate effectively (otherwise
the matrices involved tend to become ill-conditioned), this field-of-
view requirement compels us to use multiple cameras.

Lastly, why put cameras on the head and LEDs on the ceiling,
rather than vice versa, since the headmount would be much lighter
with LEDs rather than cameras?

To explain our strategy, we call the cameras on the walls the
“outside-looking-in” approach, and the cameras on the headmount
the “inside-looking-out” approach.  “Inside-looking-out” has three
advantages over its counterpart: sensitivity to orientation,
economical scalability, and energetics considerations.

Sensitivity to orientation is the ability to detect a head rotation.
In the current system, a .5 degree turn of the head, for instance,
causes a very significant change in the LEDs’ coordinates on the
photodiodes, regardless of their distances from the camera. By
contrast, in the outside-looking-in approach this change in
orientation would be almost imperceptible.

An economically scalable system is one in which the cost of
increasing the working volume is low in terms of cost per unit
tracking space. Because of the narrow field-of-view requirement on
the cameras, the outside-looking-in approach (on a 30 ft^2 area)
would need many cameras mounted on the walls. Covering the
ceiling with LEDs is less expensive.

Energetics refers to how light energy is received from an LED.
Quadrupling the distance between LED and camera, for instance,
decreases the light energy received by a factor of 16.  Furthermore,
LEDs do not emit light uniformly in every direction: most of their
power is emitted in the direction they face, and drops off with the
angle away from their axis (depending on the packaging).  If the
cameras are wall-mounted, and the LEDs are head-mounted, then,
as the user walks about, many LEDs may be oblique to the cameras,
and the distances between user and cameras may vary a great deal.
These two effects combine to make the range of signal strengths
received by the cameras too wide.
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Figure 4: Tilting three panels in the ceiling to test autocalibration.

Figure 5: Computer display of calibrated beacon locations.  The beacons shown in red were insufficiently sampled and could not be calibrated
by the algorithm (see Section 4.1).
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