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Abstract 

Let S be a family of n polyhedral objects in d dimen- 
sions, with aspect ratio bound CY and scale factor bound 
(T. Let K,(S) denote the number of object-pairs in S 
with nonempty intersection, and let &(S) denote the 
number of pairs whose enclosing balls intersect. We in- 
vestigate the worst-case behavior of the following ratio: 

p(S) = Kb(s) 
n + I&(S). 

We establish almost-tight asymptotic bounds: p(S) = 
O(ofilog20), and p(S) = fl(a&). The important 
conclusion is that the ratio is independent of n, and if S 
has bounded aspect ratio and scale factor, the number 
of enclosing ball-pair intersections is about the same as 
the number of object-pair intersections. 

Our theorem implies the following two results. 
First, it lends strong theoretical support to a simple and 
practical heuristic for collision detection (the bound- 
ing box method), used in application domains such as 
computer graphics and robotics, where the objects typ- 
ically have constant aspect ratio and scale factor. Sec- 
ond, it yields an output-sensitive algorithm for report- 
ing all intersecting pairs in a set of n convex polyhedra 
with constant Q and cr. Our algorithm runs in time 
O(n logd-’ n + K, logdml n), for d = 2,3, where I~,, is 
the number of intersecting object pairs. This is signifi- 
cantly better than the bounds achieved by the previous 
algorithms, which make no assumptions about the as- 
pect and scale factors. 

1 Introduction 

Interference and collision detection are fundamental 
problems in a variety of application domains, such 
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as physically-based modeling, robotics, animation, 
computer-aided design, manufacturing, and computer- 
simulated environments. CAD/CAM systems, for in- 
stance, use collision detection for clearance verification 
in an assembly [7, 121, robot systems use collision detec- 
tion for path planning [15] and, in computer graphics, 
collision detection works in conjunction with collision 
response to make animation appear more realistic and 
believable [2, 14, 171. 

Typically, a collision-detection algorithm takes as 
input a collection S of n d-dimensional objects, and pro- 
duces as output the pairs of objects that intersect. A 
high performance system can involve a large number of 
complicated objects, and demand accurate collision de- 
tection at real time rates. Klosowski et al. [14] state 
that technologies such as haptic force-feedback may re- 
quire over 1000 collision queries per second. Most prac- 
tical systems for collision detection divide their work 
into two phases, which we call broad phase and narrow 
phase. In the broad phase, the algorithm typically uses 
a conservative but simpler approximation of each object 
to find pairs whose approximations intersect. The nar- 
row phase then performs detailed intersection tests on 
pairs of objects found by the broad phase. Several differ- 
ent approximations for geometric objects are possible: 
axis-aligned bounding box, minimum enclosing sphere, 
oriented box, or discrete orientation polytope [2, 13, 141. 
The exact choice of an approximating shape is not criti- 
cal for our research, but for the sake of concreteness, let 
us consider the axis-aligned bounding boxes. See Fig- 
ure l(a) for an example. We can write the two-phase 
collision detection procedure as follows: 

l [BROAD PHASE.] Find all pairs of intersecting 
bounding boxes. 

l [NARROW PHASE.] For each intersecting pair found 
by the broad phase, perform a detailed intersection 
test on the corresponding objects. 
The broad and narrow phases have distinct charac- 

teristics, and often have been treated as separate pieces 
of the collision detection problem in the research com- 
munity. Specifically, the narrow phase considers the 
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problem of contact area determination: find precise in- 
tersection between facets of the two polyhedra. Thus, 
the performance of a narrow phase algorithm does not 
depend on n, the number of objects in the set, but rather 
on the complexity of each object. The broad phase looks 
at all n objects in the scene, and reports the pairs that 
potentially intersect. An efficient broad phase algorithm 
must avoid looking at all (3 pairs. Ideally, one would 
want an output-sensitive algorithm, whose running time 
is proportional to the number of colliding pairs. 

Our research is concerned with identifying some 
natural measures that would explain the practical ef- 
ficiency of the bounding box heuristic, despite its poor 
worst-case bound. We show that two parameters, as- 
pect ratio o and scale factor u, play a critical role in 
the analysis of the broad phase. Specifically, we prove 
that the number of bounding box intersections does 
not exceed about ofi times the number of object-pair 
intersections-the parameters o and c typically have 
small constant values in practice. 

n 

lb fb) -10.5 

Figure 1: (a) A polygonal object and its axis-aligned 
bounding box. (b) An example with Kb = Q(n”) and 
K, = O(1). 

The aspect ratio measures the elongatedness of an 
object. It is often defined as the ratio between the 
volumes of the smallest ball enclosing the object and 
the largest ball contained in the object. We will find it 
convenient to use the volumes of &,-norm balls in the 
d-space.’ Given a solid polyhedral object P in d-space, 
let b(P) denote the smallest L, ball containing P, and 
let c(P) denote the largest L, ball contained in P. The 
aspect ratio of P is defined as 

(Y(P) = v4w) 
vol(c(P)) ’ 

‘In two dimensions, for instance, the L, ball of radius r and 

center o is the axis-aligned square of side length 2r, with center o. 

The choice of the norm affects only the small dimension-dependent 

constant factors, and our results apply also to L2 balls or other 
commonly used norms with small changes in the constant. 

where vol(P) denotes the ‘d-dimensional volume of P. 
We will call b(P) the enclosing bw, and c(P) the core 
of P. Thus, the aspect ratio measures the volume of the 
enclosing box relative to the core. 

Let S = {PI, P2, . . . . P,,} be a set of polyhedral 
objects in d-space, with aspect ratio bound (Y, meaning 
that cr(Pi) 5 (Y, for i = 1,2,. . . , n. We say that family 
S has scale factor u if, for all 1 6 i, j 2 n, 

VOl(b(Pi)) 
vol(b(qi))- 

1.1 Statement of Results. 

Let K, be the number of object pairs in S with 
nonempty intersection, and let Kb denote the number 
of object pairs whose enclosing boxes intersect.2 (The 
set S will be clear from the context throughout, so we 
omit its explicit mention from our notation in the rest 
of the paper.) We are interested in the following ratio: 

P(S) = &. 0 
The denominator represents the work done by an ideal 
broad phase algorithm, and so the ratio can be seen 
the relative performance measure of the bounding box 
heuristic. Ideally, one would like this ratio to be a 
small constant. Unfortunately, the pathological case of 
Figure l(b) shows that without any assumptions on (Y 
and 6, we can have p(S) = Q(n). However, if we 
include aspect ratio and scale factors in the .analysis, 
we can prove the following theorem, which is the main 
result of our paper. 

THEOREM 1.1. Let S be a set of n polyhedral ob- 
jects in d dimensions, with aspect bound (Y and scale 
factor 6, where d is a constant. Then, p(S) = 
O(crfilog’ u). Asymptotically, this bound is almost 
tight, as we can show a family S achieving p(S) = 
C&/F). 

There are two main implications of this theorem. 
First, we get an output-sensitive algorithm for reporting 
all pairs of intersecting objects in a set of n convex 
polyhedra in two or three dimensions. If there are K, 
intersecting pairs, then the bounding box algorithm 
reports them in time O(n logd-’ n + Kb logd-’ m) time, 
for d = 2,3, where Kb = O(K,crfilog’ u), and m is 
the maximum number of vertices in a polyhedron. (We 
assume that polyhedra have been preprocessed in linear 
time for efficient pairwise intersection detection [4].) 
Without the aspect and scale bounds, we are not aware 

zNotice that the L, ball is a more conservative estimate than 

the axis-aligned bounding box and so Kb is an upper bound on 

the number of bounding box intersections. 
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of any output-sensitive algorithm for this problem in 
three dimensions. Even in two dimensions, the best 
algorithm for finding all intersecting pairs in a set of 
n convex polygons takes O(n4i3 + K,) time [9]. If the 
aspect and scale factors are constants, a common case in 
applications, our algorithm runs in time O(n logd-i n + 
K, logd-’ m), for d = 2,3, which is close to optimal. 

Second, our result gives a theoretical explanation 
for the observed efficiency of the bounding box heuris- 
tic for collision detection in applications mentioned ear- 
lier. In these applications, object families typically have 
small aspect ratio and scale factor, and so our theo- 
rem implies that the bounding box heuristic is asymp- 
totically optimal. This result does not depend on any 
convexity assumption about the polyhedra: it simply 
states that the number of pairs for which the narrow 
phase computation is performed is at most p times 
the best possible number; in practice, p is typically 
a small constant. Thus, pathological cases like the 
ones in Figure l(b) are unusual since they require that 
CY+ = n(n). Our theorem also shows that the de- 
pendence on aspect ratio is more severe than the scale 
factor, and thus it may be worthwhile to decompose 
complex objects into smaller pieces to improve the as- 
pect bound. 

1.2 Previous Work. 

The fundamental nature and broad applications of 
collision detection have made it an active topic of 
research. The problems are quite hard both in broad 
phase as well as in narrow phase, and provably efficient 
algorithms are known only for highly specialized cases. 

Let us first consider the narrow phase. If the 
objects are convex polyhedra, then a method due to 
Dobkin and Kirkpatrick 41 can decide whether two 
objects intersect in O(log d -‘m) time, where m is the 
total number of edges in the two polyhedra, and d 5 
3 is the dimension. The polyhedra require a linear 
time preprocessing phase. Using this preprocessing, 
one can also compute an explicit representation of the 
intersection of two convex polyhedra in time O(m), 
as shown by Chazelle [l]. If only one of the objects 
in the pair is convex, then intersection detection can 
be performed in time O(mlog m) [3]. The problem 
is more difficult when both polyhedra are nonconvex, 
and only recently has a subquadratic time algorithm 
been discovered for deciding if two nonconvex polyhedra 
intersect [19]. This algorithm takes O(m8i5+‘) time 
to determine the first collision between two polyhedra, 
one of which is stationary and the other is translating. 
These theoretical algorithms employ many novel ideas 
and sophisticated data structures, but they are deemed 
too complicated and slow to be practical. Instead a 

variety of heuristic methods have been developed that 
tend to work well in practice [8, 141. These methods 
use hierarchies of bounding volumes and tree-descent 
schemes to determine intersections. 

The broad phase problem can be formulated as fol- 
lows: Given n objects in d-space, find all intersecting 
object pairs. Provably efficient algorithms are known 
only for highly specialized objects, such as axis-aligned 
rectangular boxes. Specifically, one can find k intersect- 
ing pairs of axis-aligned rectangular boxes in d-space in 
O(n’logd-’ n + k) time and O(n logdV2 n) space [6, 161. 
No efficient algorithm is known for finding all intersect- 
ing pairs even in a set of n conuex polyhedra in 3D. 
If the objects are convex polygons in two dimensions, 
then a recent algorithm of Gupta et al. [9] can report 
the intersecting pairs in time O(n4j3 + k). A variety of 
heuristic methods are used in practice [2, 131, whose per- 
formance is typically analyzed empirically. The “sweep- 
and-prune” algorithm implemented in the I-COLLIDE 
package of Cohen et al. [2] currently appears to be 
method of choice. It falls under the generic bounding 
box class of heuristics, and as such our analysis applies 
to it. 

1.3 Organization. 

Our proof for the upper bound on p(S) consists of three 
steps. We first consider the case of arbitrary LY but 
fixed u. Next, we allow both (Y and c to be arbitrary 
but assume that there are only two kinds of objects: 
one with box sizes a and the other with box sizes (YU 
(the two extreme ends of the scale factor). Finally, we 
handle the general case, where objects can have any box 
size in the range [o, ou]. We first detail our proof for 
two dimensions, and then sketch how to extend it to 
arbitrary dimensions. 

2 Arbitrary Aspect Ratio but Fixed Scale 

We start by assuming that the set S has scale factor one, 
that is, u = 1; the aspect ratio bound cy can be arbitrary. 
(Any constant bound for u will work for our proof; we 
assume one for convenience. The most straightforward 
way to enforce this scale bound is to make every object’s 
enclosing box to be the same size.) We will show that 
in this case p(S) = O(o). We describe our proof in two 
dimensions; the extension to higher dimensions is quite 
straightforward, and is sketched in Section 5. 

Without loss of generality, let us assume that each 
object P in S has vol(c(P)) > 1, and vol(b(P)) 5 o. 
Recall that a L, box of volume (Y in two dimensions 
is a square of side length fi. We call this a size LY 
box. Consider a tiling of the plane by size (Y boxes that 
covers the portion of the plane occupied by the bounding 
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boxes of the objects, namely, Ub(Pi). See Figure 2. We 
will consider each box semi-open, so that the boundary 
shared by two boxes belongs to the one on the left, or 
above. Thus, each point of the plane belongs to at most 
one box. 

Figure 2: Tiling of the plane by boxes of size o. The 
unit size core for the object in Br is also shown. 

We assume an underlying unit lattice in the plane, 
and assign each object P to the (unique) lexicographi- 
tally smallest lattice point contained in P. (Such a point 
exists because the core is closed and has volume at least 
one.) Let m(q) be the number of objects assigned to a 
lattice point q, and let AI; denote the total number of 
objects assigned to the lattice points contained in a box 
Bi. That is, 

M = c m(q), 
qEBi 

where q E Bi means that the lattice point q lies in the 
box Bi. Since the boxes in the tiling are disjoint, we 
have the equality xi Mi = n. We will derive the bounds 
on Kb and K, in terms of Mi. 

LEMMA 2.1. Given a set of objects S with aspect 
bound CY and scale bound u = 1, let B1, BQ, . . ., BP 
denote a tiling by size cy boxes as defined above, and let 
Mi denote the total number of objects assigned to lattice 
points in Bi, for i = 1,2,. . . ,p. Then, 

Kb 5 25kM,2. 
i=l 

Proof Consider an object P assigned to Bi, and 
let Pj be another object whose box intersects b(P). 
Suppose Pj is assigned to the box Bj. Since b(P) f~ 
b(Pj) # 0, the L, norm distance between the boxes Bi 
and Bj is at most 26. This means that Bj is among 

Figure 3: A box, shown in dark at the center, and its 
24 neighbors. 

the 24 boxes that lie within 2fi wide corridor around 
Bi. 

Suppose that the boxes are labeled B1, Bz, . . ., BP 
in the row-major order-top to bottom, left to right in 
each row. Assume that the number of columns in the 
box tiling is k. Then, the preceding discussion shows 
that if the boxes of objects Pi and Pj intersect and these 
objects are assigned to boxes Bi and Bj, then we must 
have 

j = i+ck+d, 

where c, d E (-2, -l,O, 1,2}. (The box Bj can be at 
most two rows and two columns away from Bi. For 
instance, the box preceding two rows and two columns 
from Bj is Bi-zk-2.) See Figure 3. The number of box 
pair intersections contributed by Bi and Bj is clearly 
no more than MiMj. Thus, the total number of such 
intersections is bounded by 

i=l j=i+ck+d 

where c,d E (-2, -l,O, 1,2}. Recalling that 21~2 2 
~(zT + xi), for reals 21,~~ we can bound the intersec- 
tion count by 

i=lj=i+&+d 

:(M~+M;). 

There are 5 possible values for c and d each, and so 
altogether 25 values for j for each i. Since each index 
can appear once as the i and once as the j, we get that 
the maximum number of intersections is at most 

25eMf. 
i=l 

This completes the proof of the lemma. Cl 
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Next, we establish a lower bound on the number LEMMA 2.3. Let x1, x:2,. . . ,x,, be non-negative 
of intersecting object pairs. We will need the following numbers that sum to z. The minimum value of 
elementary fact. c;=‘=, (“2) is %(% - n)/2 n, which is achieved when xi = 

LEMMA 2.2. Consider non-negative numbers z/n, for i = 1,2,. . . , n. 
U~,Q ,..., a,, andbl,bz ,..., b,. Then, Proof We observe the following equalities: 

al + a2 + . . . + a, 

bl+ bz + ..a+ b, 
I ly*:$ ;. 

_ _ , 

Proof. Let m denote the index for which the ratio 
ai/bi is maximized. Since bi(a,/b,) 2 ai, summing it 
over all i, we get 

Thus, C;=“=, (“2) is minimized when Cy=‘=, $ is mini- 
mized. Using Cauchy’s Inequality [lo], the latter is min- 

pkbi 2 kai. 
imized when ti = z/n. The lemma follows. 0 

m i=l i=l Since no square box of size CK can have more than 

Dividing both sides by Cy=‘=, bi completes the proof of 2[a] lattice points in it, we get a lower bound on Li by 

the lemma. q setting m(q) = a, for all q. Thus, 

Let us now focus on objects assigned to a box 
Bi in our tiling. If Li is the number of intersecting 

Li 2 :Mj 
($p)- 

pairs among objects assigned to Bi, then we have the 
following: LEMMA 2.4. P(S) = O(a). 

Proof. Using the bound for Li above, we have 

P(S) I 
25M,” 

+fj ($J _ 1) + Mj ’ 100’a1’ 
. . . , 

’ 

25(Mf + M; + . . . + M;) 

(MI + LI) + (M2 + Lo) + . . . + (or + or) This completes the proof. cl 

where the second to last inequality follows from the fact 
that xi Mi = n, and the last inequalityfollows from the 
preceding lemma. We will establish an upper bound on 
the right hand side of this inequality by proving a lower 
bound on the denominator term. 

Fix a box Bi in the following discussion, where 
1 5 i 5 p, and consider a lattice point q in it. Since m(q) 

objects have q in common, at least (“6”)) object pair 
intersections are contributed by the objects assigned to 
q. (Observe that each object is assigned to a unique 
lattice point, and so we count each intersection at most 
once.) Thus, the total number of pairwise intersections 
Li among objects assigned to Bi is at least 

We will show that the ratio 25MF/(Mi + Li) never 
exceeds co, where c is an absolute constant. Considering 
M; fixed, this ratio is maximized when Li is minimized. 

THEOREM 2.1. Let S be a set of n objects in the 
plane, with aspect bound (Y and scale bound u = 1. 
Then, p(S) = O(a). 

3 Objects of two Fixed Sizes 

In this section, we generalize the result of the previous 
section to the case where objects come from the two 
extreme ends of the scale: their box size is either LY or 
CYU. To simplify our analysis, we will assume that (Y = 4a 
and cr = 4’ for some integers a, b > 0. (Otherwise, 
just use the next nearest powers of 4 as upper bounds 
for cr, u. In d dimensions, o and u are assumed to be 
integral powers of 2d.) 

Let us call an object large if its enclosing box has 
size or, and small otherwise. Clearly, there are only 
three kinds of intersections: large-large, small-small, 
and large-small. Let KL, Ki and K$, respectively, 
count these intersections for the enclosing boxes. So, 
for example, Ki’ is number of pairs consisting of one 
large and one small object whose boxes intersect. Sim- 
ilarly, define the terms KL, Ki and K,$ for object pair 
intersections. The ratio bound can now be restated as 
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(3.1) P(S) = 
K; + K; + K;’ 

K; + I-; + K;’ + n 

where K’ = KA + K,S + Kz’ +n. We know from the result 

of the previous section that $, fj$ 5 CQ, for some 
constant c. So, we only need to establish a bound on 

the third ratio , X,+Kf$K,,+, , which we do as follows. 
Let us again tfle the plane with boxes of volume (YU. 

Call these boxes Bi, Ba, . . ., BP. Underlying this tiling 
are two grids: a level c grid, which divides the boxes 
into cells of size u, and a level 1 grid, which divides the 
boxes into cells of size 1. The level c grid has vertices at 
coordinates (ifi, j&), while the finer grid has vertices 
at coordinates (i, j), for integers i, j. The level B grid 
is used to reason about large objects, while the level 1 
grid is used for small objects. We will mimic the proof 
of the previous section, and assign objects of each class 
to an appropriate box. In order to do that, we need to 
define subboxes of size (Y within each size (YU original 
box. 

% Bi2 

I I I I 
I ~~:~~~~,~~~-,--~-J-- 

I I 

----------;--------- 

I 
I ~~:~~~~:~~~~:~~.~:~~ 
I I 
, I I I I 

I I I I 
I --A ---- 3 ----A-- 

‘i Bio 

Figure 4: The box on the left shows large grid, and 
the one on the right shows small grid as well as the 
subboxes. In this figure, cr = 4 and u = 16. 

Consider a large box Bi . The level u grid partitions 
Bi into Q boxes of volume u each. Next, we also 
partition Bi into u subboxes, each of volume (Y. Since 
(Y = 4“ and u = 4’, for integers a, b > 0, these subboxes 
are perfectly aligned with both the level 1 and level u 
grids. (Along a side of Bi, the u grid has vertices at 
distance multiples of ,/Z = 2’, while the vertices of the 
subboxes lie at distance multiples of ,/E = 2”.) We 
label the u subboxes within Bi as Bil, Bi2, . . . , Bi,, in 
row major order. Figure 4 illustrates these definitions, 
by showing two boxes side by side. 

Now, each member of the large object set (resp. 
small object set) contains at least one grid point of the 

large (resp. small) grid. Just as in the previous section, 
we assign each object to a unique grid point (say, the 
one with lexicographically sm.allest coordinates). Let Xi 
denote the number of large (objects assigned to all the 
grid points in Bi. Let yij, for j = 1,2, . . . , u, denote the 
number of small objects assigned to the subbox Bij. 
Define also x = C& yjj to be the total number of 
small objects assigned to level one grid points in Bi. 

We estimate an upper bound on Kl’ and a lower 
bound on K,S’ , in terms of Xi and Yi. Fix a box Bi. 
The enclosing box of a large object Pi, assigned to Bi, 
can intersect the box of a small object Pj, assigned 
to Bj, only if Bj is one of the 25 neighbors of Bi 
(including itself) that form the two layers of boxes 
around Bi. (See Figure 3 again.) Let Bzv be the 
box with a maximum number of small objects among 
the 25 neighbors of Bi, and let yl.“’ be the count of 
the small objects in By. That is, xrn = maxj{Yj 1 
Bj is one of 25 neighbors of Bi}, and By is the box 
corresponding to Yi”‘. Then, we have the following 
upper bound: 

i=l 

Next, we estimate lower bounds on the number of 
object pair intersections. Let Li denote the number 
of object pair intersections among the large objects 
assigned to Bi, and let Si denote the object pair 
intersections among the small objects assigned to Bi. 
Since there are only Q grid points for the large objects 
in Bi, by Lemma 2.3, we have 

Li 2 fXi 3-1 . 
( > a 

Similarly, each of the subboxes Bij, for j = 
1,2,..., u, has (Y grid points of the level 1 grid. Thus, 
we also have 

In deriving our bound, we will use the conservative 
estimate of ~~zl(Li + Si) for K,; that is, only count 
the intersections between two large or two small objects. 
We also use the notation Sr for the number of object- 
pair intersections among the small objects assigned to 
BT . We have the following inequalities: 

K,s’ 25 cy=l Xjxm 
n + IL ’ n+~]l=l(Li +Si) 

252 ‘& Xix”’ 
= 25~f=l(Xj+Lj+yi+Si) 
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where the second inequality follows from the fact that 
cf=r (Xi + yi) = n; the third follows from the fact that 
a particular box B,? can contribute the Yim term to at 
most its 25 neighbors; and the final inequality follows 
from Lemma 2.2. The remaining step of the proof now 
is to show that the above inequality is O(o@). First, 
by summing up the terms in Eqs. (3.2) and (3.3), we 
observe the following: 

where recall that cj”=i y; = Yim. Thus, we have 

Xiyi” 2axjY7 

xi+yl.m+Li+sy s xi” + c;=l(y;)2 

I 
2crxiyl.m 

xi” + u( ?)2 

I 
Paoxj~::” 

uxi” + (Yim)2’ 

where once again Cauchy’s inequality is invoked to show 
that c,“,,(yg)” 2 c($?)~. It can be easily shown that 
this ratio is at most 247, as follows. If yl.” 5 fiXi, 
then we have 

Otherwise, Yi” > fiXi, and we have 

2ffUXix.m 
ox; + (Yjm)2 s 

2C7$” 

im 2 
5 2&F. 

This shows that & = O(cr,/Z). Combining this 
with Ineq. (3.2), we get the desired result, which is 
stated in the following theorem. 

THEOREM 3.1. Suppose S is a set of n objects in 
the plane, such that each object has aspect ratio at most 
CY, and the enclosing box of each object has size either Q 
or CYU. Then, p(S) = O(c+). 

4 The General Case 

We now are in a position to prove our main theorem. 6 Lower Bound Constructions 

Suppose S is a set of n polyhedral objects, with aspect We first describe a construction of a family S with 
ratio bound o and scale factor u. Recall that for u = 1, which shows p(S) = Q(a). The construction 
simplicity we assume that both LY and u are powers of works in any dimension d, but for ease of exposition, 

four. We partition the set S into O(log u) classes, CO, Cl, 
. . ., Ck, for k = log u, such that a polyhedron P belongs 
to class Ci if 2’ 5 vol(c(P)) < 2’+l. (Equivalently, 
the enclosing boxes of objects in class Ci have volumes 
between ~2~ and a2’+l.) Each class behaves like a 
fixed size family (the case considered in Section 2), 
and SO we have p(Ci) = O(o), for i = 0, 1, . . . , logu. 
Any pair of classes behaves like the case considered 
in Section 3, implying that p(Ci U Cj) = O(a&), for 
0 5 i, j 5 log u. We can now formalize this argument 
to show that p(S) = O(ct+log2 u). 

Let KiJ, for 0 5 i, j 5 log a, denote the number 
of object pairs (P, P’) w h ose enclosing boxes intersect 
such that P E Ci and P’ E Cj. Similarly, define Kij. 
Then, we have the folIowing: 

P(S) = 
xi cj KY 

xi cj KY + n 

5 
maxi,j Kf 

Ci cj Kjj + n log2 u 

where the second inequality follows from the fact that 
i, j are each bounded by log a, and the last inequality 
follows directly from Theorem 3.1. This proves our main 
result, which we restate in the following theorem. 

THEOREM 4.1. Let S be a set of n objects in the 
plane, with aspect ratio bound (Y and scale factor bound 
u. Then, p(S) = O(cu&log2u). 

5 Extension to Higher Dimensions 

The proof extends easily to d dimensions, for d 2 3. 
The structure of the proof remains exactly the same. 
We tile the d-dimensional space with boxes (L, balls). 
The main difference arises in the number of neighboring 
boxes for a given box Bi. While in the plane, a box has 
at most 52 neighboring boxes in the two surrounding 
layers, this number increases to 5d in d dimensions. 
Since our arguments have been volume based, they 
hold in d dimensions as well. Our main theorem in d 
dimensions can be stated as follows. 

THEOREM 5.1. Let S be a set of n polyhedral ob- 
jects in d-space, with aspect ratio bound a and scale 
factor bound u. Then, p(S) = O(a@log2u), where 
the constant is about 5d. 
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we describe it in two dimensions. See Figure 5 for 
illustration. 

,____ ~ ----: ----: ---- ;,, 
I I 
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Figure 5: The lower bound construction showing p(S) = c 
Q(a)* 

small 
objects d 

Consider a square box B of size CK in the standard 
position, namely, B = [O,d x [0, 4. We can pack 
roughly Q unit boxes in B, in a regular grid pattern; 
the number is [&I” to be exact. We convert each 
of these unit boxes into a polyhedral object of aspect 
ratio (Y, by attaching two “wire” extensions at the two 
endpoints of its main diagonal. Specifically, consider 
one such unit box u, the endpoints of whose main 
diagonal have coordinates (ui, a~) and (bl, 62). The 
b endpoint of u is connected to the point (fi, G) 
with a Manhattan path, whose ith edge is parallel to 
the positive i-coordinate axes and has length $? - bi. 
Similarly, the a endpoint of u is connected to the origin 
with a Manhattan path, whose ith edge is parallel to 
the negative i-coordinate axes and has length ai. It is 
easy to see that each unit box, together with the two 
wire extensions forms a polyhedral object with aspect 
ratio cr. By a small perturbation, we can ensure that 
no two objects intersect. The bounding boxes of each 
object pair intersect, however, and so we have at least 
(T) bounding box intersections in B. 

We can group our n objects into Ln/o] groups, each 
group corresponding to a o-size box as above. This gives 
us 

On the other hand, K, = 0, and thus, p(S) = 
SZ(na/n) = cqcr). 

Figure 6: The lower bound construction, showing 
p(S) = cqc+). 

object to the corners c, d of B’. Thus, the smallest 
enclosing box of each object is now exactly B’, and 
aspect ratio is 4o. These are the big objects. Next, we 
take the upper-left quadrant, divide it into u subboxes 
of size CK each. At each o-size subbox, we place a copy 
of the construction in Figure 5. These are the small 
objects. 

Altogether we want X = n/(1 + &) big objects, 
and Y = nfi/(l + ,/-) u small objects. Since there are a 
total of (Y locations for big objects, we superimpose X/o 
copies of the big object at each location. Similarly, there 
are QU locations for the small objects, so superimpose 
Y/oa copies of the small object at each location. (This 
is where we need the condition (YU 5 n, since we want so 
ensure that each location receives at least one object.) 
Let us now estimate bounds for I<b and K,. The 
enclosing box of every big object intersects the enclosing 
box of every small object, we have 

(6.4) 

On the other hand, the only object pair intersec- 
tions exist between objects assigned to the same loca- 
tion. We therefore have 

We next generalize this construction to establish a 
lower bound of Q((Y~, assuming that au 5 n. See 
Figure 6. 

We take a square box B’ of volume 4ao. We divide 
the lower right quadrant of B’ into cr subboxes of size u. 
We take a copy of the construction of Figure 5, scale it 
up by a factor of u, and put it in place of the lower right 
quadrant of B’. We extend the wires attached to each 

5 cr(X/cg2 + (Yu(Y/cru)” 

I 
ax2 + Y2 

cru 
2n2 

I 
(Y(1 + &)“. 



Thus, 

for some constant c > 0. (The ratio e is 
bounded by a constant, since au 5 n.) 

THEOREM 6.1. There exists a family S of n poly- 
hedral objects with aspect ratio bound CY and scale factor 
d such that p(S) = CZ(a&), assuming LYU 5 n. 

7 Applications and Concluding Remarks 

Theorems 4.1 and 5.1 have two interesting conse- 
quences. The first is a theoretical validation of the 
bounding box heuristic mentioned in Section 1. In prac- 
tice, the object families tend to have bounded aspect 
ratio and scale factor. Thus, the number of extrane- 
ous box intersections is at most a constant factor of the 
number of actual object-pair intersections. This result 
needs no assumption about the convexity of the objects. 

If the aspect ratio and scale factor grow with n, 
our theorem indicates their impact on the efficiency 
of the heuristic. The degradation of the heuristic 
is smooth, and not abrupt. Furthermore, the result 
suggests that the dependence on aspect ratio and scale 
factor is not symmetric-the complexity grows linearly 
with a, but only as a square root of u. It is common 
in practice to decompose complex objects into simpler 
parts. Our work suggests that for collision detection 
purposes, reducing aspect ratio may have higher payoff 
that reducing scale factor. It would be interesting 
to verify empirically how this strategy performs in 
practice. 

The second consequence of our theorems is an out- 
put sensitive algorithm for reporting pairwise intersec- 
tions among polyhedra; the bound is the strongest for 
convex polyhedra in dimensions d = 2,3. We are 
aware of only one non-trivial result for this problem, 
which holds in two dimensions. Gupta et al. [9] give an 
O(n4i3 + K,) time algorithm for reporting I<, pairs of 
intersecting convex polygons in the plane. The problem 
is wide open in three and higher dimensions. 

Our theorem leads to a significantly better result 
in two and three dimensions for small aspect and scale 
bounds, and nearly optimal result for convex polyhedra. 
Given n polyhedra in two or three dimensions, we can 
report all pairs whose bounding boxes intersect in time 

o(n logdvl n + Kb) [6, 161, where Kb is the number of 
intersecting bounding box pairs. If the polyhedra are 
convex, then the narrow phase intersection test can be 
performed in O(logd-’ m) time [4], assuming that all 
polyhedra have been preprocessed in linear time; m 
is the maximum number of vertices in a polyhedron. 
If the convex polyhedra have aspect ratio at most (Y 
and scale factor at most u, then by Theorem 5.1, the 
total running time of the algorithm is O(nlogd-’ n+ 
CY~~K~ log2 ulogddl m), for d = 2,3. If (Y and u 
are constants, then the running time is O(nlogd-i n+ 
K, logd- l m), which is nearly optimal. 

Finally, an obvious open problem suggested by our 
work is to close the gap between the upper and lower 
bounds on p(S). We believe the correct bound is 
@(ofi. Our analysis is quite loose and the actual con- 
stants of proportionality are likely to be much smaller 
than our estimates. It would be interesting to establish 
better constants both theoretically and empirically. 
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