Between Imitation and Intention Learning

James MacGlashan
Brown University
james_macglashan @brown.edu

Abstract

Research in learning from demonstration can gen-
erally be grouped into either imitation learning or
intention learning. In imitation learning, the goal is
to imitate the observed behavior of an expert and is
typically achieved using supervised learning tech-
niques. In intention learning, the goal is to learn
the intention that motivated the expert’s behavior
and to use a planning algorithm to derive behav-
ior. Imitation learning has the advantage of learn-
ing a direct mapping from states to actions, which
bears a small computational cost. Intention learn-
ing has the advantage of behaving well in novel
states, but may bear a large computational cost by
relying on planning algorithms in complex tasks.
In this work, we introduce receding horizon inverse
reinforcement learning, in which the planning hori-
zon induces a continuum between these two learn-
ing paradigms. We present empirical results on
multiple domains that demonstrate that performing
IRL with a small, but non-zero, receding planning
horizon greatly decreases the computational cost of
planning while maintaining superior generalization
performance compared to imitation learning.

1 Introduction

In Learning from Demonstration (LfD), an agent derives a
policy (a mapping from states to actions) for an environment
by observing an expert’s behavior. Two widely studied ap-
proaches to this problem include imitation learning and inten-
tion learning. Imitation learning learns a direct mapping from
states to actions, typically with a supervised learning algo-
rithm where the inputs are state features and the output is an
action label. Intention learning is often framed as an inverse
reinforcement learning (IRL) [Ng and Russell, 2000] problem
in which the goal is to learn a reward function that would mo-
tivate the observed training behavior, and then use a planning
algorithm to indirectly derive the policy that maximizes the
learned reward function. In this way, intention learning can
be characterized as an LfD algorithm that has a “decision-
making bias” that leverages the environment’s transition dy-
namics and state features, whereas immitation learning limits
itself to state features.

Michael L. Littman
Brown University
mlittman @cs.brown.edu

Each paradigm has advantages. In imitation learning, the
policy is learned directly, so the only computation required
when the agent behaves in the world is evaluating the learned
classifier. However, if the agent is in a novel state that is not
sufficiently similar to states seen in the training data, behav-
ior may suffer. Inversely, intention learning may have a high
computational cost—both at training and test time—due to
its reliance on a planning algorithm in the decision loop, but
may generalize better to novel states since its planning algo-
rithm can produce novel behavior that maximizes the expert’s
intentions. Depending on the richness of the task, the com-
putational complexity may be prohibitive; in fact, a designer
may prefer imitation learning precisely because solving the
true task directly with a planning algorithm is too computa-
tionally demanding.

In this work, we introduce receding horizon inverse rein-
forcement learning (RHIRL), which defines an IRL problem
of finding a reward function that causes a receding horizon
controller (RHC) to match the expert’s behavior. An RHC
is a policy that, in each state, maximizes the expected future
discounted reward up until some time interval in the future.
In the context of IRL, an RHC has the important property that
the horizon defines a continuum between imitation and inten-
tion learning. With a planning horizon of zero, RHIRL will
seek a reward function that directly defines the preferences
for actions in each state, thereby imitating the training data
and requiring very low computational cost. With an infinite
horizon, we recover the standard IRL problem with a poten-
tially large computational cost for planning, depending on the
richness of the task. By using intermediate planning horizon
values, however, the computational complexity of the plan-
ning algorithm can be fixed independent of the task complex-
ity, while also affording the agent some ability to look into
the future to account for novel situations. In effect, RHIRL
learns a representation of the task along with planning knowl-
edge that guides behavior.

We present empirical results on three domains: a navi-
gation domain, the classic reinforcement-learning mountain
car domain [Singh and Sutton, 1996], and a lunar lander
game [MacGlashan, 2013]. We show that even a small hori-
zon can result in vastly superior test performance on novel
states compared to imitation learning. We have also made

RHIRL publically available as part of BURLAP', an open
source reinforcement learning and planning library.

2 Markov Decision Processes

Like other IRL algorithms, we formalize the decision-making
problem an agent faces as a Markov Decision Process (MDP).
An MDP is defined by the tuple (S, A, T, R), where S is the
set of states in the world; A is the set of actions that the agent
can take; T'(s'|s, a) defines the transition dynamics: the prob-
ability of the agent transitioning to state s’ € S after taking
action ¢ € A in state s € S; and R(s,a,s’) is the reward
function, which returns the reward the agent receives for tak-
ing action a in state s and transitioning to state s’.

The goal of planning or learning in an MDP is to find
a policy 7 S — A (a mapping from states to ac-
tions) that maximizes the expected future discounted reward:
E 2oV R(st, ar, s¢41) |), where y € [0, 1] is a discount
factor specifying how much immediate rewards are favored
over distant rewards, and s; and a; are the state and action
taken at time ¢, respectively.

Two important concepts for planning and learning are the
state value function (V) and the state-action value function
(Q). The optimal state value function (V*) specifies the ex-
pected future discounted reward when following the optimal
policy for each state; the Bellman equation defines this func-
tion recursively as

V*(s) = max S/gs T(s'|s,a) [R(s,a,s") +4V*(s)]. (1)

The optimal state-action value function (Q*) specifies the ex-
pected future discounted reward when taking each action in
each state and then following the optimal policy thereafter. It
is similarly recursively defined as

Q"(s,a) = Y T(s'|s,a) [R(s,a,8") +V*(s)]. (@)

s'eS

Note that the state value function may be written in terms of
the state-action value function:

V*(s) = r;leajcQ*(s,a). 3)

Many planning and learning algorithms estimate the optimal
state value function or state-action value function directly and
then set the policy to 7(s) = max,ca Q(s,a) [Bertsekas,
19871.

When computing a value function is too challenging, ap-
proximations can be used instead. One common form of ap-
proximation is receding horizon control (RHC). In RHC, the
agent selects actions for each state according to a finite hori-
zon value function for that state. A finite horizon value func-
tion defines the expected future discounted reward for h steps
into the future (the horizon). The value functions for a hori-
zon h are recursively defined as

Vh(s) = max T(s'|s,a) [R(s,a,s") + V"1 (s")]
¢ s’eS
4)

"http://burlap.cs.brown.edu/

and

Q"(s,a) = Z T(s'|s,a) [R(s,a,s) + V" ()], (5)

s'es

where V?(s) = 0. Similarly to Equation 3, the finite horizon
state value function can be rewritten as the maximum finite
horizon Q-value. The optimal policy for an RHC with a hori-
zon of h is defined as 7" (s) = max,c4 Q" (s, a). The name
receding horizon refers to the fact that, after each decision,
the planning horizon recedes one more step from where it
was when the previous decision was made.

3 Learning from Demonstration

In Learning from Demonstration (LfD), the goal is to take as
input example behavior from an expert acting in an MDP and
learn a policy that can replicate the expert’s behavior and per-
formance in the environment. In some contexts, the reward
function the expert is trying to maximize is assumed to be
known and can be leveraged to improve performance [Abbeel
and Ng, 2005; Walsh et al., 2010]. Here, we make the more
standard IRL assumption that we do not know the expert’s un-
derlying reward function, but instead have knowledge of the
MDP’s states, actions, and transition dynamics and examples
of expert behavior. Ideally, the learned policy should gen-
eralize so that it can replicate the expert’s behavior even in
states unobserved in the demonstrations. We formalize train-
ing demonstrations as a set of MDP trajectories. An MDP
trajectory (¢) is a sequence of |{| = n state-action pairs,
t = ((s1,a1), s (Sn, an)), observed from the expert start-
ing in some initial state of the environment (s;) and acting
for n time steps. Therefore, each state s; in the trajectory
is expected to be drawn according to s; ~ T'(s;|s;—1,a;—1),
except for the first state (s1), which is assumed to be drawn
from some other unknown initial state distribution or selected
by the expert. For goal-directed terminating tasks, trajectories
end when a goal state is reached.

We next describe two approaches to LfD: imitation learn-
ing and intention learning.

3.1 Imitation Learning

We define imitation learning as an LfD problem that only has
access to state features and the action labels in the trajectory.
This problem can be formulated as a supervised learning clas-
sification problem in which the inputs (x) are state features
and the output label (y) is the action to take. To create the su-
pervised learning dataset, we assume access to a state-feature
vector function ¢ : S — R™. Given a set of expert trajec-
tories D, the training data input X is defined as the state-
feature vector for each state in each state-action pair of each
trajectory in the dataset: X = {¢(s) | (s,a) € U;ept)h
the training data output Y is defined as the set of actions
in each state-action pair of each trajectory in the dataset:
Y ={al(s,a) € Uept}

Once a supervised learning dataset has been created, any
“off-the-shelf” classification algorithm can be used to learn
a policy. In the past, various classification algorithms, such
as decision trees and support vector machines, have been
used [Pomerleau, 1993].

3.2 Intention Learning

In contrast to imitation learning, we define intention learning
as a LfD problem that in addition to the state features, also
uses the transition dynamics of the environment and seeks a
goal that motivates the observed expert behavior. In the con-
text of MDPs, intention learning can be framed as an inverse
reinforcement learning (IRL) problem, where the the inten-
tion of the expert is captured by the reward function they
are trying to maximize [Ng and Russell, 2000]. IRL solu-
tions effectively generalize to novel states that require novel
unobserved behavior, because even a simple reward function
can induce complex behavior for many states. For example,
many goal-directed MDP tasks have a simple reward func-
tion where every state returns a value of —1, except the goal,
which returns some non-negative value [Koenig and Sim-
mons, 1993].

Although there are other IRL formalizations, we adopt the
formalization that treats finding a reward function that mo-
tivates the observed behavior as an inference problem [Ra-
machandran and Amir, 2007; Babes et al., 2011; Lopes et al.,
2009; Ziebart ef al., 2008]. Specifically, given a dataset D of
trajectories, we seek the maximum likelihood reward func-
tion R. Our approach follows Babes et al. [2011], in which
the likelihood of D given reward function R is defined as

|l

L(DIR) = [[7r(s: a), ©6)

teD i

where Tg(s, a) is a stochastic policy defining the probability
of taking action a in state s when the reward function to be
maximized is R. Specifically, we use the Boltzmann (soft-
max) policy

BQ(sa)

Za’eA eﬁQ(S@/) ’
where [is a parameter that controls how noisy the policy is
with respect to the action with the maximum Q-value. As (3
approaches infinity, the softmax policy deterministically se-
lects actions with the maximum Q-value; when 5 = 0, the
softmax policy selects actions uniformly at random. When
the expert’s behavior is expected to be noisy and suboptimal,
it is useful to set 3 nearer to zero. (The [parameter can be
optimized automatically as well, but we do not take that ap-
proach here.)

To quickly find the maximum likelihood reward function,
Babes et al. assume that the reward function is differentiable
and parameterized by a vector . Then, gradient ascent in
the log likelihood of the parameter space is used to find the
maximum likelihood reward function. The gradient of the log
likelihood is

m(s,a) =

(N

|t]
Vios (LD = 33 sl
where
Vom(s,a) =
BVQ(s,a)ZaZ — Zo -, BVeQ(s,d') Zo']
72 ;)

Z,=ePR6N) and Z =%, 4 Zar.

Note that computing the gradient of the softmax policy re-
quires computing the gradient of the Q-function, which typ-
ically isn’t differentiable everywhere due to the max oper-
ator in the value function. Babes et al. resolve this dif-
ficulty by changing the max operator in the value function
in Equation 3 to be a Q-value weighted softmax distribution
Vi(s) = > aca Q(s,a)m(s,a). This value function is differ-
entiable everywhere and as [approaches infinity, it converges
to the standard state-value function.

4 Receding Horizon IRL

We now introduce Receding Horizon IRL (RHIRL). In
RHIRL, the goal is to find a reward function that motivates
an RHC to match the observed expert behavior. Adopting the
same approach as before, this search is formalized as finding
the maximum likelihood reward function where the stochastic
policy is a softmax variant of the receding horizon controller.
Therefore, for a horizon of h, the likelihood function in Equa-
tion 6 is modified to use a softmax policy of the finite horizon
Q-values (7" (s, a)).

For many standard planning tasks, RHCs may require a
very large horizon to well approximate the optimal infinite
horizon policy. For example, goal-directed tasks typically
have very sparse rewards, only valuing reaching a distant goal
state. For these reward functions, RHCs behave randomly un-
til the goal state is within the horizon and the RHC can hone
in on it. However, when RHIRL searches over a sufficiently
expressive reward function space, it need not suffer this same
limitation, because it can include local “shaping” rewards as
well as the rewards needed to represent the task [Ng et al.,
19991

For example, suppose the expert is in actuality trying to
maximize an infinite horizon task, but the RHIRL horizon is
set to 1. In this case, a valid 1-step horizon reward function
that can reproduce the same behavior is a reward function
that is structurally the same as the state value function for
the infinite horizon task. Naturally, a horizon of 1 provides
the agent limited ability to generalize to novel states, but, as
the horizon grows, the agent can react better to task specific
features. With a sufficiently large horizon, the best RHIRL
reward function may in fact be the actual reward function the
expert was trying to maximize. We explore this effect further
in our navigation task results (Section 5.1).

To efficiently find an RHC reward function that matches
the expert’s behavior, we adapt the softmax value function
and gradient ascent approach employed by Babes er al. to fi-
nite horizon planning. That is, we assume the reward function
is differentiable and parameterized by a vector 6 and compute
the softmax value function, and its gradient, using a recursive
tree-search algorithm as shown in Algorithm 1.

The algorithm takes as input the state (s) and planning
horizon (h). When the horizon is zero, the value function
and gradient is set to zero. For all other cases, the algorithm
first recursively computes the value function and gradient for
all possible transition states for h — 1. When the number of
possible transitions from a state is large or infinite, the tran-
sition function in the tree-search algorithm can be replaced

Algorithm 1 ComputeValue(s, h)

if » = 0 then
Vh(s):=0
V@Vh(s) =0
return
end if
for a € Ado
Shi={s eS| T(ss,a) >0}
for s’ € S’ do
computeValue(s’, h — 1)
end for
Q"(s,a) = Yooes T(s']s,a) {R(s, a,s') + ﬁ/f/h—l(s/)]

> recursive base case

VoQ"(s,a) = s T(8']5,a) X [V@R(.97a,s’) +"/V9Vh’1(s’)]

end for .
V(s) = 20ea Q" (s,0)75 (s, a)
VGVh (S) = ZaeA VQQh(S7 a)ﬂ-g (S, a) + Qh(57 a)Vﬂ'g(& a)

with a sparse sampled approximation [Kearns et al., 1999]
that maintains a bounded computational complexity. Next,
the algorithm computes the Q-value and Q-value gradient,
which are functions of the next states’ value and value gra-
dient for horizon h — 1, which was recursively computed in
the previous step. Using the Q-values and Q-value gradients,
the state value function and value function gradient is set for
the current state and horizon. This algorithm can be trivially
memoized to prevent repeated computation of the same state-
horizon value function.

Given the finite horizon value function and its gradient, the
gradient of the receding horizon policy is trivially computed
and gradient ascent is used to search for the maximum likeli-
hood reward function.

Under our normal definition for a finite horizon value func-
tion, the state value at h = 0 is zero. This definition would
cause an RHC with a horizon of zero to behave randomly.
However, it is more useful to think of an RHC controller with
h = 0 as the case when the agent cannot look any steps into
the future; as an imitation learning problem. Instead then, we
treat an RHC with A = 0 as a special case that uses an in-
stantaneous reward function (R(s, a)) to encode action pref-
erences. If a reward function is normally defined in terms of
state features, it is trivial to turn it into state-action features
that encode action preferences by maintaining a duplicate set
of state features for each action. Similar to how an RHC hori-
zon of 1 may result in learning a reward function that is simi-
lar to the value function of the infinite horizon task, a horizon
of zero may result in learning a reward function that is similar
to the Q-function of the infinite horizon task.

5 Experimental Results

We compare RHIRL’s performance with various horizons to
imitation learning on three domains: a navigation domain, the
classic RL mountain car domain [Singh and Sutton, 1996],
and a lunar lander game [MacGlashan, 2013]. For imitation
learning, we use Weka’s J48 classifier [Hall er al., 2009],
which is an implementation of the decision tree algorithm

Figure 1: The four expert trajectories and cell type distribu-
tion in the 30x30 navigation task.

C4.5 [Quinlan, 1993], and Weka’s logistic regression imple-
mentation. We found that J48 was superior to logistic re-
gression in all cases except lunar lander. Therefore, we only
report logistic regression’s results in lunar lander. Because
our goal is to test generalization performance, in all experi-
ments we use very few demonstrations and then test the per-
formance of the learned results on start states not observed
in the demonstrations. We also report the total training CPU
time. For RHIRL, training time includes the “replanning”
necessary for all steps of gradient ascent. Note that for the
continuous state domains (mountain car and lunar lander), ex-
act solutions for an infinite horizon are intractable; for typical
reinforcment learning in these kinds of domains, approxima-
tion methods, like value function approximation, using many
thousands of samples are necessary and can require its own
parameter tuning, making it challenging to solve the standard
IRL problem in such domains.

To facilitate generalization, the learned reward function is a
linear combination of both task features and agent-space fea-
tures [Konidaris and Barto, 2006]. Agent-space features are
features relative to the agent that have been used in the past
to successfully learn reward shaping values. For the super-
vised learning baselines, we tested performance using both
the state variables of the domain, and agent-space features
(and others); however, the basline performance was always
better using the domain’s state variables, so we only report
those results.

5.1 Navigation

The navigation task we tested is a 30x30 grid world in which
the agent can move north, south, east, or west. Each cell in
the grid world can either be empty or belong to one of five
different cell types, each represented by a distinct color.

Expert demonstrations were optimal trajectories for a re-
ward function that assigned a reward of zero for empty cells
and yellow cells, a reward of one to blue cells, and a reward
of —10 for the red, green, and purple cells. The expert trajec-
tories and distribution of colored cells are shown in Figure 1.
RHIRL used 10 steps of gradient ascent.

We compare the performance of RHIRL with horizons
lengths 45, 6, 1, and O to the J48 supervised learning algo-
rithm. The horizon of length 45 is used as an upperbound
to represent the standard IRL case when the horizon is suffi-
ciently large to find the goal location. In this case, we take

Algorithm Start 1 Start2 Goal Training CPU
J48 1 4 F 0.27s
RHIRL h =0 F F F 0.40s
RHIRL h =1 2 3 2 0.83s
RHIRL h = 6 2 1 1 1.68s
RHIRL h = 45 0 0 0 8.0s

Table 1: Navigation performance and total training CPU time.
Performance indicates the number of obstacles hit on the path
to the goal, or if the agent failed to reach the goal entirely
(indicated by an “F”).

a more standard IRL approach of setting the reward function
features to only task features: five binary features that indi-
cate whether the agent is in each type of cell. For the shorter
horizons, the reward function features include the same task
features and five agent-space features that specify the Man-
hattan distance of the agent to the nearest cell of each type,
for a total of ten features.

After training, we consider three test cases: two in which
the start state of the agent is novel from any of the demonstra-
tions (“Start 17 and “Start 2””) and a third in which the start
state of the agent has been previously observed, but the goal
blue cell is somewhere new (“goal”). Table 1 shows the per-
formance for each test. An F' indicates that the agent failed
to reach the goal cell; otherwise, the number indicates the
number of obstacles the agent hit along the path to the goal
(smaller is better).

Imitation learning generally performed poorly. After learn-
ing, J48 only managed to solve the two tasks with different
start states, and RHIRL with A = 0 could not solve any of
the tasks. However, when A > 0, RHIRL was able to suc-
cessfully solve all tasks. With larger horizons, the agent was
better at avoiding obstacles.

To illustrate how RHIRL learns not just a description of
the task, but reward shaping values that guide the agent, Fig-
ure 2 projects onto the grid world the objective reward func-
tion used to generate the expert trajectories, the state value
function under the objective reward function, and the learned
reward function under RHIRL with h = 6. Note that the
objective reward function is very discontinuous, whereas its
value function is a fairly smooth gradient toward the goal.
Rather than learn the discontinuous objective reward func-
tion, RHIRL’s learned reward function captures a similar gra-
dient that guides the agent in the correct direction despite its
small horizon.

5.2 Mountain Car

In the mountain car domain, the agent is tasked with driving
an under powered car out of a valley. The agent has three
actions: accelerate forward, accelerate backwards, and coast.
To get out of the valley, the agent needs to rock back and forth
to gain momentum. The problem is described by two state
variables: the car’s position in the valley and its velocity. The
task is complete when the agent reaches the top of the front
side of the valley.

For learning, we use a set of nine radial basis functions dis-

THtpd of 1
S T T
I.llls ’.ﬂ.
e 1 o T,

(a) (b) (©)

Figure 2: The navigation task objective reward function (a),
objective value function (b), and RHIRL (h = 6) learned re-
ward function (c). Whiter spots indicate larger values. Note
that the learned reward function resembles the objective value
function more than the objective reward function.

Algorithm Good Demo. Bad Demo. Training CPU
J48 115 F 0.325/0.23s
RHIRL h =0 107 F 0.47s/0.32s
RHIRL h =1 134 147 0.86s/0.74s
RHIRL h =4 139 141 6.80s/4.01s

Table 2: Mountain car performance and total training CPU
time. Performance is measured in the number of steps to exit
the valley. An “F” indicates that the agent failed to complete
the task. CPU time for each demonstration is reported.

tributed over the state space, which is a feature set often used
for value function approximation in reinforcement learning
for this task. We evaluate learned performance from the bot-
tom of the valley under two different training conditions. In
the first training condition, the agent must learn from a single
trajectory that starts halfway up the front side of the valley,
backs down to the opposite side of the valley, and then pow-
ers forward to escape. In the second training condition, the
agent must learn from a single trajectory that shows the agent
starting at the top of the back side of the valley and powering
forward the entire way to the top of the font side of the valley.
In both conditions, the demonstrations were provided by an
author of the paper and may be suboptimal with respect to the
task. We consider the demonstration in the first condition a
“good” demonstration because it exhibits the rocking behav-
ior necessary to succeed when stating in the valley; we con-
sider the second demonstration a “bad” demonstration since
it does not demonstrate the critical rocking behavior. RHIRL
used 15 steps of gradient ascent.

As before, we compared RHIRL with various horizons
against J48. Table 2 shows the number of steps taken to
complete the task for each algorithm under each training con-
dition. For the good demonstration, imitation learning with
RHIRL (h = 0) performs the best. The decrease in perfor-
mance as the horizon increases is possibly due to the fact that,
in the demonstration, the expert overshot going backwards by
failing to begin slowing down soon enough. With increased
ability to look ahead, RHIRL may try to match this observed
trajectory. In contrast, imitation learning will observe the for-
ward acceleration actions on the back side of the valley with

Figure 3: The RHIRL (h = 1) learned reward function for the
mountain car task. The x-axis is the position of the car; the y-
axis its velocity. The red curve the is “bad”” demonstration and
the blue curve is the learned behavior starting in the valley.

a high velocity and match those overall preferences, thereby
encouraging the agent to reverse sooner.

For the bad demonstration, both imitation learning variants
fail. Remarkably, however, RHIRL with a horizon as small
as 1 is able to complete the task. To investigate why, Figure 3
projects the h = 1 learned reward function onto a plot of the
position and velocity variables. The figure also projects the
expert demonstration (in red) and the trajectory of the learned
agent (in blue). The results show that at slow or negative ve-
locities, the agent prefers the back valley since the demon-
stration is at its slowest there. As a consequence, the agent
is first motivated to back up, and then power forward once
it can gain forward momentum. However, this momentum
is not enough to climb the front valley completely, so once it
loses its forward momentum, it is again motivated to go to the
back of the valley. At this point, the agent now is in a sim-
ilar position as the start of the demonstration and it powers
forward.

5.3 Lunar Lander

The lunar lander domain is a simplified version of the classic
Atari game by the same name. In this domain, an agent pilots
a lunar lander and is tasked with taking off and landing on a
landing pad. The agent has five possible actions: a powerful
rocket thrust, a weak rocket thrust, coast, and rotate clockwise
and counterclockwise. The state variables defining the task
include the agent’s x and y position, angle of rotation, and x
and y velocities.

For learning, 12 state features were used. Two features
were binary; one for indicating that the agent was touching
the ground and another that it had landed on the landing pad.
Nine features were radial basis functions that depended on the
x and y position of the agent (not its rotation or velocity) and
were spaced uniformly across the area. A final radial basis
function was placed on the top of the landing pad.

The training data consisted of two expert trajectories pro-
vided by an author of the paper, which could be subopti-
mal; one that started very near the landing pad, and another a
medium distance from it. Both training trajectories are shown
in Figure 4. Test performance from two initial states was eval-
uated; first from an “easy” start position that was between the

Figure 4: The Lunar Lander task. The blue box is the landing
pad. The black lines represent the expert trajectories used
for learning. The red, purple, and blue lines represent the
RHIRL learned solutions for horizons of one, three, and five,
respectively.

start position of the two demonstrations, and a “hard” start po-
sition that was much further from the landing pad than either
training trajectory. RHIRL used 10 steps of gradient ascent.

Table 3 shows the performance in terms of number of steps
for the agent to complete the task in each test condition. Lo-
gistic regression does well on the easy start, but fails to gen-
eralize to the hader start. Moreover, reviewing the resulting
trajectory for the easy start reveals that the agent nearly per-
fectly replicates one of the expert trajectories, only rotating
one step earlier and using one strong thrust in place of a weak
trust, suggesting that the agent only performed well because
memorizing one of the trajectories is sufficient to behave well
in the easy start.

In contrast, RHIRL with a small lookahead is able to suc-
cessfully pilot the ship to the landing pad for both easy and
hard starts. In particular, there is a large improvement in per-
formance for h = 5. This increase in performance is likely
due to the fact that once the agent can look ahead far enough,
it can more stably determine how to pilot the ship closer to the
landing pad (which can require steps of rotating and thrust-
ing). This effect is illustrated in Figure 4, which shows the
learned trajectories for RHIRL with o = 1, h = 3, and
h = 5 from the hard start position. In all cases, the agent
first launches into the air, having learned from the demon-
strations that the ground is to be avoided. However, only for
h = 5 does the agent quickly move toward the landing pad af-
ter taking off; learning with smaller horizons causes the agent
to tend to spend a good deal of time trying to stablize vertical
velocity before finding its way toward the landing pad.

6 Conclusion

In this work, we introduced Receding Horizon Inverse Re-
inforcement Learning (RHIRL), which uses IRL techniques
to learn a reward function for a receding horizon controller
(RHC) from expert demonstrations. Although RHCs are of-
ten unable to behave well in normal planning tasks, IRL
learns a reward function that shapes the agent’s behavior in
ways that compensate for the short lookahead. Furthermore,
the horizon of RHIRL defines a continuum between imitation
and intention learning where a horizon of zero instantiates an

Algorithm Easy Hard Training CPU
Logistic Regression 34 F 0.38s
RHIRL h =0 F F 1.41s
RHIRL & =1 184 242 1.67s
RHIRL h =3 188 115 4.15s
RHIRL h =5 57 72 29.50s

Table 3: Lunar Lander performance and total training CPU
time. Performance is the number of steps to land on the land-
ing pad. An “F” indicates that the agent failed to complete
the task.

imitation learning problem in which action preferences are
directly modeled, and a large horizon recovers the standard
IRL problem.

We showed on multiple domains that even with very few
demonstrations and a small horizon, RHIRL is able to suc-
cessfully generalize to novel states, whereas traditional imita-
tion learning methods can completely fail. As a consequence,
RHIRL can capture much of IRL’s ability to generalize with-
out paying the large computational cost necessary for infinite
horizon planning in complex domains.

In this work, we adapted the gradient ascent approach of
IRL developed by Babes ef al. [2011]. This approach allows
good reward functions to be quickly discovered. However,
other IRL techniques might also be effective for RHIRL.

A limitation of RHIRL is that, for a non-zero horizon, ac-
cess to the transition function is required. In the future, it
would be useful to explore how well RHIRL works when only
an approximate, or learned, transition function is available. If
the learned reward function includes state-action features, it
may be possible for RHIRL to learn rewards that help miti-
gate the effects of errors in the model.

References

[Abbeel and Ng, 2005] Pieter Abbeel and Andrew Y. Ng.
Exploration and apprenticeship learning in reinforcement
learning. In Proceedings of the 22nd international confer-
ence on Machine learning, pages 1-8, 2005.

[Babes et al., 2011] Monica Babes, Vukosi N. Marivate,
Michael L. Littman, and Kaushik Subramanian. Appren-
ticeship learning about multiple intentions. In Interna-
tional Conference on Machine Learning, pages 897-904,
2011.

[Bertsekas, 1987] Dimitri P. Bertsekas. Dynamic Program-
ming: Deterministic and Stochastic Models. Prentice-
Hall, Englewood Cliffs, NJ, 1987.

[Hall ez al., 2009] Mark Hall, Eibe Frank, Geoffrey Holmes,
Bernhard Pfahringer, Peter Reutemann, and Ian H Witten.
The weka data mining software: an update. ACM SIGKDD
explorations newsletter, 11(1):10-18, 2009.

[Kearns et al., 1999] Michael Kearns, Yishay Mansour, and
Andrew Y. Ng. A sparse sampling algorithm for near-
optimal planning in large Markov decision processes. In

Proceedings of the Sixteenth International Joint Confer-
ence on Artificial Intelligence (IJCAI-99), pages 1324—
1331, 1999.

[Koenig and Simmons, 1993] Sven Koenig and Reid G.
Simmons. Complexity analysis of real-time reinforcement
learning. In Proceedings of the Eleventh National Confer-
ence on Artificial Intelligence, pages 99—105, Menlo Park,
CA, 1993. AAAI Press/MIT Press.

[Konidaris and Barto, 2006] G.D. Konidaris and A.G. Barto.
Autonomous shaping: Knowledge transfer in reinforce-
ment learning. In Proceedings of the Twenty Third Interna-
tional Conference on Machine Learning, pages 489-496,
June 2006.

[Lopes ef al., 2009] Manuel Lopes, Francisco Melo, and
Luis Montesano. Active learning for reward estimation
in inverse reinforcement learning. In Machine Learn-
ing and Knowledge Discovery in Databases, pages 31-46.
Springer, 2009.

[MacGlashan, 2013] James MacGlashan. Multi-Source
Option-Based Policy Transfer. PhD thesis, University of
Maryland, Baltimore County, 2013.

[Ng and Russell, 2000] Andrew Y. Ng and Stuart Russell.
Algorithms for inverse reinforcement learning. In Interna-
tional Conference on Machine Learning, pages 663—670,
2000.

[Ng et al., 1999] Andrew Y. Ng, Daishi Harada, and Stuart
Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Proceed-
ings of the Sixteenth International Conference on Machine
Learning, pages 278-287, 1999.

[Pomerleau, 1993] Dean A. Pomerleau. Neural network per-
ception for mobile robot guidance. Kluwer Academic Pub-
lishing, 1993.

[Quinlan, 1993] Ross Quinlan. C4.5: Programs for Machine
Learning. Morgan Kaufmann Publishers, San Mateo, CA,
1993.

[Ramachandran and Amir, 2007] Deepak Ramachandran
and Eyal Amir. Bayesian inverse reinforcement learning.
International Joint Conference on Artificial Intelligence,,
pages 2586-2591, 2007.

[Singh and Sutton, 1996] Satinder P. Singh and Richard S.
Sutton. Reinforcement learning with replacing eligibility
traces. Machine Learning, 22(1/2/3):123—-158, 1996.

[Walsh et al., 2010] Thomas J. Walsh, Kaushik Subrama-
nian, Michael L. Littman, and Carlos Diuk. Generaliz-
ing apprenticeship learning across hypothesis classes. In
Proceedings of the Twenty-Seventh International Confer-
ence on Machine Learning (ICML-10), pages 1119-1126,
2010.

[Ziebart et al., 2008] Brian D Ziebart, Andrew L Maas,
J Andrew Bagnell, and Anind K Dey. Maximum entropy
inverse reinforcement learning. In AAAI, pages 1433-
1438, 2008.

