stl_map.h

Go to the documentation of this file.
00001 // Map implementation -*- C++ -*-
00002 
00003 // Copyright (C) 2001, 2002, 2004 Free Software Foundation, Inc.
00004 //
00005 // This file is part of the GNU ISO C++ Library.  This library is free
00006 // software; you can redistribute it and/or modify it under the
00007 // terms of the GNU General Public License as published by the
00008 // Free Software Foundation; either version 2, or (at your option)
00009 // any later version.
00010 
00011 // This library is distributed in the hope that it will be useful,
00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00014 // GNU General Public License for more details.
00015 
00016 // You should have received a copy of the GNU General Public License along
00017 // with this library; see the file COPYING.  If not, write to the Free
00018 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
00019 // USA.
00020 
00021 // As a special exception, you may use this file as part of a free software
00022 // library without restriction.  Specifically, if other files instantiate
00023 // templates or use macros or inline functions from this file, or you compile
00024 // this file and link it with other files to produce an executable, this
00025 // file does not by itself cause the resulting executable to be covered by
00026 // the GNU General Public License.  This exception does not however
00027 // invalidate any other reasons why the executable file might be covered by
00028 // the GNU General Public License.
00029 
00030 /*
00031  *
00032  * Copyright (c) 1994
00033  * Hewlett-Packard Company
00034  *
00035  * Permission to use, copy, modify, distribute and sell this software
00036  * and its documentation for any purpose is hereby granted without fee,
00037  * provided that the above copyright notice appear in all copies and
00038  * that both that copyright notice and this permission notice appear
00039  * in supporting documentation.  Hewlett-Packard Company makes no
00040  * representations about the suitability of this software for any
00041  * purpose.  It is provided "as is" without express or implied warranty.
00042  *
00043  *
00044  * Copyright (c) 1996,1997
00045  * Silicon Graphics Computer Systems, Inc.
00046  *
00047  * Permission to use, copy, modify, distribute and sell this software
00048  * and its documentation for any purpose is hereby granted without fee,
00049  * provided that the above copyright notice appear in all copies and
00050  * that both that copyright notice and this permission notice appear
00051  * in supporting documentation.  Silicon Graphics makes no
00052  * representations about the suitability of this software for any
00053  * purpose.  It is provided "as is" without express or implied warranty.
00054  */
00055 
00056 /** @file stl_map.h
00057  *  This is an internal header file, included by other library headers.
00058  *  You should not attempt to use it directly.
00059  */
00060 
00061 #ifndef _MAP_H
00062 #define _MAP_H 1
00063 
00064 #include <bits/concept_check.h>
00065 
00066 namespace _GLIBCXX_STD
00067 {
00068   /**
00069    *  @brief A standard container made up of (key,value) pairs, which can be
00070    *  retrieved based on a key, in logarithmic time.
00071    *
00072    *  @ingroup Containers
00073    *  @ingroup Assoc_containers
00074    *
00075    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
00076    *  <a href="tables.html#66">reversible container</a>, and an
00077    *  <a href="tables.html#69">associative container</a> (using unique keys).
00078    *  For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
00079    *  value_type is std::pair<const Key,T>.
00080    *
00081    *  Maps support bidirectional iterators.
00082    *
00083    *  @if maint
00084    *  The private tree data is declared exactly the same way for map and
00085    *  multimap; the distinction is made entirely in how the tree functions are
00086    *  called (*_unique versus *_equal, same as the standard).
00087    *  @endif
00088   */
00089   template <typename _Key, typename _Tp, typename _Compare = less<_Key>,
00090             typename _Alloc = allocator<pair<const _Key, _Tp> > >
00091     class map
00092     {
00093       // concept requirements
00094       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
00095       __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
00096                 _BinaryFunctionConcept)
00097 
00098     public:
00099       typedef _Key                                          key_type;
00100       typedef _Tp                                           mapped_type;
00101       typedef pair<const _Key, _Tp>                         value_type;
00102       typedef _Compare                                      key_compare;
00103 
00104       class value_compare
00105       : public binary_function<value_type, value_type, bool>
00106       {
00107     friend class map<_Key,_Tp,_Compare,_Alloc>;
00108       protected:
00109     _Compare comp;
00110 
00111     value_compare(_Compare __c)
00112     : comp(__c) { }
00113 
00114       public:
00115     bool operator()(const value_type& __x, const value_type& __y) const
00116     { return comp(__x.first, __y.first); }
00117       };
00118 
00119     private:
00120       /// @if maint  This turns a red-black tree into a [multi]map.  @endif
00121       typedef _Rb_tree<key_type, value_type,
00122                _Select1st<value_type>, key_compare, _Alloc> _Rep_type;
00123       /// @if maint  The actual tree structure.  @endif
00124       _Rep_type _M_t;
00125 
00126     public:
00127       // many of these are specified differently in ISO, but the following are
00128       // "functionally equivalent"
00129       typedef typename _Alloc::pointer                   pointer;
00130       typedef typename _Alloc::const_pointer             const_pointer;
00131       typedef typename _Alloc::reference                 reference;
00132       typedef typename _Alloc::const_reference           const_reference;
00133       typedef typename _Rep_type::allocator_type         allocator_type;
00134       typedef typename _Rep_type::iterator               iterator;
00135       typedef typename _Rep_type::const_iterator         const_iterator;
00136       typedef typename _Rep_type::size_type              size_type;
00137       typedef typename _Rep_type::difference_type        difference_type;
00138       typedef typename _Rep_type::reverse_iterator       reverse_iterator;
00139       typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
00140 
00141       // [23.3.1.1] construct/copy/destroy
00142       // (get_allocator() is normally listed in this section, but seems to have
00143       // been accidentally omitted in the printed standard)
00144       /**
00145        *  @brief  Default constructor creates no elements.
00146        */
00147       map()
00148       : _M_t(_Compare(), allocator_type()) { }
00149 
00150       // for some reason this was made a separate function
00151       /**
00152        *  @brief  Default constructor creates no elements.
00153        */
00154       explicit
00155       map(const _Compare& __comp, const allocator_type& __a = allocator_type())
00156       : _M_t(__comp, __a) { }
00157 
00158       /**
00159        *  @brief  Map copy constructor.
00160        *  @param  x  A %map of identical element and allocator types.
00161        *
00162        *  The newly-created %map uses a copy of the allocation object used
00163        *  by @a x.
00164        */
00165       map(const map& __x)
00166       : _M_t(__x._M_t) { }
00167 
00168       /**
00169        *  @brief  Builds a %map from a range.
00170        *  @param  first  An input iterator.
00171        *  @param  last  An input iterator.
00172        *
00173        *  Create a %map consisting of copies of the elements from [first,last).
00174        *  This is linear in N if the range is already sorted, and NlogN
00175        *  otherwise (where N is distance(first,last)).
00176        */
00177       template <typename _InputIterator>
00178         map(_InputIterator __first, _InputIterator __last)
00179     : _M_t(_Compare(), allocator_type())
00180         { _M_t.insert_unique(__first, __last); }
00181 
00182       /**
00183        *  @brief  Builds a %map from a range.
00184        *  @param  first  An input iterator.
00185        *  @param  last  An input iterator.
00186        *  @param  comp  A comparison functor.
00187        *  @param  a  An allocator object.
00188        *
00189        *  Create a %map consisting of copies of the elements from [first,last).
00190        *  This is linear in N if the range is already sorted, and NlogN
00191        *  otherwise (where N is distance(first,last)).
00192        */
00193       template <typename _InputIterator>
00194         map(_InputIterator __first, _InputIterator __last,
00195         const _Compare& __comp, const allocator_type& __a = allocator_type())
00196     : _M_t(__comp, __a)
00197         { _M_t.insert_unique(__first, __last); }
00198 
00199       // FIXME There is no dtor declared, but we should have something generated
00200       // by Doxygen.  I don't know what tags to add to this paragraph to make
00201       // that happen:
00202       /**
00203        *  The dtor only erases the elements, and note that if the elements
00204        *  themselves are pointers, the pointed-to memory is not touched in any
00205        *  way.  Managing the pointer is the user's responsibilty.
00206        */
00207 
00208       /**
00209        *  @brief  Map assignment operator.
00210        *  @param  x  A %map of identical element and allocator types.
00211        *
00212        *  All the elements of @a x are copied, but unlike the copy constructor,
00213        *  the allocator object is not copied.
00214        */
00215       map&
00216       operator=(const map& __x)
00217       {
00218     _M_t = __x._M_t;
00219     return *this;
00220       }
00221 
00222       /// Get a copy of the memory allocation object.
00223       allocator_type
00224       get_allocator() const
00225       { return _M_t.get_allocator(); }
00226 
00227       // iterators
00228       /**
00229        *  Returns a read/write iterator that points to the first pair in the
00230        *  %map.
00231        *  Iteration is done in ascending order according to the keys.
00232        */
00233       iterator
00234       begin()
00235       { return _M_t.begin(); }
00236 
00237       /**
00238        *  Returns a read-only (constant) iterator that points to the first pair
00239        *  in the %map.  Iteration is done in ascending order according to the
00240        *  keys.
00241        */
00242       const_iterator
00243       begin() const
00244       { return _M_t.begin(); }
00245 
00246       /**
00247        *  Returns a read/write iterator that points one past the last pair in
00248        *  the %map.  Iteration is done in ascending order according to the keys.
00249        */
00250       iterator
00251       end()
00252       { return _M_t.end(); }
00253 
00254       /**
00255        *  Returns a read-only (constant) iterator that points one past the last
00256        *  pair in the %map.  Iteration is done in ascending order according to
00257        *  the keys.
00258        */
00259       const_iterator
00260       end() const
00261       { return _M_t.end(); }
00262 
00263       /**
00264        *  Returns a read/write reverse iterator that points to the last pair in
00265        *  the %map.  Iteration is done in descending order according to the
00266        *  keys.
00267        */
00268       reverse_iterator
00269       rbegin()
00270       { return _M_t.rbegin(); }
00271 
00272       /**
00273        *  Returns a read-only (constant) reverse iterator that points to the
00274        *  last pair in the %map.  Iteration is done in descending order
00275        *  according to the keys.
00276        */
00277       const_reverse_iterator
00278       rbegin() const
00279       { return _M_t.rbegin(); }
00280 
00281       /**
00282        *  Returns a read/write reverse iterator that points to one before the
00283        *  first pair in the %map.  Iteration is done in descending order
00284        *  according to the keys.
00285        */
00286       reverse_iterator
00287       rend()
00288       { return _M_t.rend(); }
00289 
00290       /**
00291        *  Returns a read-only (constant) reverse iterator that points to one
00292        *  before the first pair in the %map.  Iteration is done in descending
00293        *  order according to the keys.
00294        */
00295       const_reverse_iterator
00296       rend() const
00297       { return _M_t.rend(); }
00298 
00299       // capacity
00300       /** Returns true if the %map is empty.  (Thus begin() would equal
00301        *  end().)
00302       */
00303       bool
00304       empty() const
00305       { return _M_t.empty(); }
00306 
00307       /** Returns the size of the %map.  */
00308       size_type
00309       size() const
00310       { return _M_t.size(); }
00311 
00312       /** Returns the maximum size of the %map.  */
00313       size_type
00314       max_size() const
00315       { return _M_t.max_size(); }
00316 
00317       // [23.3.1.2] element access
00318       /**
00319        *  @brief  Subscript ( @c [] ) access to %map data.
00320        *  @param  k  The key for which data should be retrieved.
00321        *  @return  A reference to the data of the (key,data) %pair.
00322        *
00323        *  Allows for easy lookup with the subscript ( @c [] ) operator.  Returns
00324        *  data associated with the key specified in subscript.  If the key does
00325        *  not exist, a pair with that key is created using default values, which
00326        *  is then returned.
00327        *
00328        *  Lookup requires logarithmic time.
00329        */
00330       mapped_type&
00331       operator[](const key_type& __k)
00332       {
00333     // concept requirements
00334     __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
00335 
00336     iterator __i = lower_bound(__k);
00337     // __i->first is greater than or equivalent to __k.
00338     if (__i == end() || key_comp()(__k, (*__i).first))
00339           __i = insert(__i, value_type(__k, mapped_type()));
00340     return (*__i).second;
00341       }
00342 
00343       // modifiers
00344       /**
00345        *  @brief Attempts to insert a std::pair into the %map.
00346        *  @param  x  Pair to be inserted (see std::make_pair for easy creation of
00347        *             pairs).
00348        *  @return  A pair, of which the first element is an iterator that points
00349        *           to the possibly inserted pair, and the second is a bool that
00350        *           is true if the pair was actually inserted.
00351        *
00352        *  This function attempts to insert a (key, value) %pair into the %map.
00353        *  A %map relies on unique keys and thus a %pair is only inserted if its
00354        *  first element (the key) is not already present in the %map.
00355        *
00356        *  Insertion requires logarithmic time.
00357        */
00358       pair<iterator,bool>
00359       insert(const value_type& __x)
00360       { return _M_t.insert_unique(__x); }
00361 
00362       /**
00363        *  @brief Attempts to insert a std::pair into the %map.
00364        *  @param  position  An iterator that serves as a hint as to where the
00365        *                    pair should be inserted.
00366        *  @param  x  Pair to be inserted (see std::make_pair for easy creation of
00367        *             pairs).
00368        *  @return  An iterator that points to the element with key of @a x (may
00369        *           or may not be the %pair passed in).
00370        *
00371        *  This function is not concerned about whether the insertion took place,
00372        *  and thus does not return a boolean like the single-argument
00373        *  insert() does.  Note that the first parameter is only a hint and can
00374        *  potentially improve the performance of the insertion process.  A bad
00375        *  hint would cause no gains in efficiency.
00376        *
00377        *  See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
00378        *  for more on "hinting".
00379        *
00380        *  Insertion requires logarithmic time (if the hint is not taken).
00381        */
00382       iterator
00383       insert(iterator position, const value_type& __x)
00384       { return _M_t.insert_unique(position, __x); }
00385 
00386       /**
00387        *  @brief A template function that attemps to insert a range of elements.
00388        *  @param  first  Iterator pointing to the start of the range to be
00389        *                 inserted.
00390        *  @param  last  Iterator pointing to the end of the range.
00391        *
00392        *  Complexity similar to that of the range constructor.
00393        */
00394       template <typename _InputIterator>
00395         void
00396         insert(_InputIterator __first, _InputIterator __last)
00397         { _M_t.insert_unique(__first, __last); }
00398 
00399       /**
00400        *  @brief Erases an element from a %map.
00401        *  @param  position  An iterator pointing to the element to be erased.
00402        *
00403        *  This function erases an element, pointed to by the given iterator,
00404        *  from a %map.  Note that this function only erases the element, and
00405        *  that if the element is itself a pointer, the pointed-to memory is not
00406        *  touched in any way.  Managing the pointer is the user's responsibilty.
00407        */
00408       void
00409       erase(iterator __position)
00410       { _M_t.erase(__position); }
00411 
00412       /**
00413        *  @brief Erases elements according to the provided key.
00414        *  @param  x  Key of element to be erased.
00415        *  @return  The number of elements erased.
00416        *
00417        *  This function erases all the elements located by the given key from
00418        *  a %map.
00419        *  Note that this function only erases the element, and that if
00420        *  the element is itself a pointer, the pointed-to memory is not touched
00421        *  in any way.  Managing the pointer is the user's responsibilty.
00422        */
00423       size_type
00424       erase(const key_type& __x)
00425       { return _M_t.erase(__x); }
00426 
00427       /**
00428        *  @brief Erases a [first,last) range of elements from a %map.
00429        *  @param  first  Iterator pointing to the start of the range to be
00430        *                 erased.
00431        *  @param  last  Iterator pointing to the end of the range to be erased.
00432        *
00433        *  This function erases a sequence of elements from a %map.
00434        *  Note that this function only erases the element, and that if
00435        *  the element is itself a pointer, the pointed-to memory is not touched
00436        *  in any way.  Managing the pointer is the user's responsibilty.
00437        */
00438       void
00439       erase(iterator __first, iterator __last)
00440       { _M_t.erase(__first, __last); }
00441 
00442       /**
00443        *  @brief  Swaps data with another %map.
00444        *  @param  x  A %map of the same element and allocator types.
00445        *
00446        *  This exchanges the elements between two maps in constant time.
00447        *  (It is only swapping a pointer, an integer, and an instance of
00448        *  the @c Compare type (which itself is often stateless and empty), so it
00449        *  should be quite fast.)
00450        *  Note that the global std::swap() function is specialized such that
00451        *  std::swap(m1,m2) will feed to this function.
00452        */
00453       void
00454       swap(map& __x)
00455       { _M_t.swap(__x._M_t); }
00456 
00457       /**
00458        *  Erases all elements in a %map.  Note that this function only erases
00459        *  the elements, and that if the elements themselves are pointers, the
00460        *  pointed-to memory is not touched in any way.  Managing the pointer is
00461        *  the user's responsibilty.
00462        */
00463       void
00464       clear()
00465       { _M_t.clear(); }
00466 
00467       // observers
00468       /**
00469        *  Returns the key comparison object out of which the %map was
00470        *  constructed.
00471        */
00472       key_compare
00473       key_comp() const
00474       { return _M_t.key_comp(); }
00475 
00476       /**
00477        *  Returns a value comparison object, built from the key comparison
00478        *  object out of which the %map was constructed.
00479        */
00480       value_compare
00481       value_comp() const
00482       { return value_compare(_M_t.key_comp()); }
00483 
00484       // [23.3.1.3] map operations
00485       /**
00486        *  @brief Tries to locate an element in a %map.
00487        *  @param  x  Key of (key, value) %pair to be located.
00488        *  @return  Iterator pointing to sought-after element, or end() if not
00489        *           found.
00490        *
00491        *  This function takes a key and tries to locate the element with which
00492        *  the key matches.  If successful the function returns an iterator
00493        *  pointing to the sought after %pair.  If unsuccessful it returns the
00494        *  past-the-end ( @c end() ) iterator.
00495        */
00496       iterator
00497       find(const key_type& __x)
00498       { return _M_t.find(__x); }
00499 
00500       /**
00501        *  @brief Tries to locate an element in a %map.
00502        *  @param  x  Key of (key, value) %pair to be located.
00503        *  @return  Read-only (constant) iterator pointing to sought-after
00504        *           element, or end() if not found.
00505        *
00506        *  This function takes a key and tries to locate the element with which
00507        *  the key matches.  If successful the function returns a constant
00508        *  iterator pointing to the sought after %pair. If unsuccessful it
00509        *  returns the past-the-end ( @c end() ) iterator.
00510        */
00511       const_iterator
00512       find(const key_type& __x) const
00513       { return _M_t.find(__x); }
00514 
00515       /**
00516        *  @brief  Finds the number of elements with given key.
00517        *  @param  x  Key of (key, value) pairs to be located.
00518        *  @return  Number of elements with specified key.
00519        *
00520        *  This function only makes sense for multimaps; for map the result will
00521        *  either be 0 (not present) or 1 (present).
00522        */
00523       size_type
00524       count(const key_type& __x) const
00525       { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
00526 
00527       /**
00528        *  @brief Finds the beginning of a subsequence matching given key.
00529        *  @param  x  Key of (key, value) pair to be located.
00530        *  @return  Iterator pointing to first element equal to or greater
00531        *           than key, or end().
00532        *
00533        *  This function returns the first element of a subsequence of elements
00534        *  that matches the given key.  If unsuccessful it returns an iterator
00535        *  pointing to the first element that has a greater value than given key
00536        *  or end() if no such element exists.
00537        */
00538       iterator
00539       lower_bound(const key_type& __x)
00540       { return _M_t.lower_bound(__x); }
00541 
00542       /**
00543        *  @brief Finds the beginning of a subsequence matching given key.
00544        *  @param  x  Key of (key, value) pair to be located.
00545        *  @return  Read-only (constant) iterator pointing to first element
00546        *           equal to or greater than key, or end().
00547        *
00548        *  This function returns the first element of a subsequence of elements
00549        *  that matches the given key.  If unsuccessful it returns an iterator
00550        *  pointing to the first element that has a greater value than given key
00551        *  or end() if no such element exists.
00552        */
00553       const_iterator
00554       lower_bound(const key_type& __x) const
00555       { return _M_t.lower_bound(__x); }
00556 
00557       /**
00558        *  @brief Finds the end of a subsequence matching given key.
00559        *  @param  x  Key of (key, value) pair to be located.
00560        *  @return Iterator pointing to the first element
00561        *          greater than key, or end().
00562        */
00563       iterator
00564       upper_bound(const key_type& __x)
00565       { return _M_t.upper_bound(__x); }
00566 
00567       /**
00568        *  @brief Finds the end of a subsequence matching given key.
00569        *  @param  x  Key of (key, value) pair to be located.
00570        *  @return  Read-only (constant) iterator pointing to first iterator
00571        *           greater than key, or end().
00572        */
00573       const_iterator
00574       upper_bound(const key_type& __x) const
00575       { return _M_t.upper_bound(__x); }
00576 
00577       /**
00578        *  @brief Finds a subsequence matching given key.
00579        *  @param  x  Key of (key, value) pairs to be located.
00580        *  @return  Pair of iterators that possibly points to the subsequence
00581        *           matching given key.
00582        *
00583        *  This function is equivalent to
00584        *  @code
00585        *    std::make_pair(c.lower_bound(val),
00586        *                   c.upper_bound(val))
00587        *  @endcode
00588        *  (but is faster than making the calls separately).
00589        *
00590        *  This function probably only makes sense for multimaps.
00591        */
00592       pair<iterator,iterator>
00593       equal_range(const key_type& __x)
00594       { return _M_t.equal_range(__x); }
00595 
00596       /**
00597        *  @brief Finds a subsequence matching given key.
00598        *  @param  x  Key of (key, value) pairs to be located.
00599        *  @return  Pair of read-only (constant) iterators that possibly points
00600        *           to the subsequence matching given key.
00601        *
00602        *  This function is equivalent to
00603        *  @code
00604        *    std::make_pair(c.lower_bound(val),
00605        *                   c.upper_bound(val))
00606        *  @endcode
00607        *  (but is faster than making the calls separately).
00608        *
00609        *  This function probably only makes sense for multimaps.
00610        */
00611       pair<const_iterator,const_iterator>
00612       equal_range(const key_type& __x) const
00613       { return _M_t.equal_range(__x); }
00614 
00615       template <typename _K1, typename _T1, typename _C1, typename _A1>
00616         friend bool
00617         operator== (const map<_K1,_T1,_C1,_A1>&,
00618             const map<_K1,_T1,_C1,_A1>&);
00619 
00620       template <typename _K1, typename _T1, typename _C1, typename _A1>
00621         friend bool
00622         operator< (const map<_K1,_T1,_C1,_A1>&,
00623            const map<_K1,_T1,_C1,_A1>&);
00624     };
00625 
00626   /**
00627    *  @brief  Map equality comparison.
00628    *  @param  x  A %map.
00629    *  @param  y  A %map of the same type as @a x.
00630    *  @return  True iff the size and elements of the maps are equal.
00631    *
00632    *  This is an equivalence relation.  It is linear in the size of the
00633    *  maps.  Maps are considered equivalent if their sizes are equal,
00634    *  and if corresponding elements compare equal.
00635   */
00636   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00637     inline bool
00638     operator==(const map<_Key,_Tp,_Compare,_Alloc>& __x,
00639                const map<_Key,_Tp,_Compare,_Alloc>& __y)
00640     { return __x._M_t == __y._M_t; }
00641 
00642   /**
00643    *  @brief  Map ordering relation.
00644    *  @param  x  A %map.
00645    *  @param  y  A %map of the same type as @a x.
00646    *  @return  True iff @a x is lexicographically less than @a y.
00647    *
00648    *  This is a total ordering relation.  It is linear in the size of the
00649    *  maps.  The elements must be comparable with @c <.
00650    *
00651    *  See std::lexicographical_compare() for how the determination is made.
00652   */
00653   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00654     inline bool
00655     operator<(const map<_Key,_Tp,_Compare,_Alloc>& __x,
00656               const map<_Key,_Tp,_Compare,_Alloc>& __y)
00657     { return __x._M_t < __y._M_t; }
00658 
00659   /// Based on operator==
00660   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00661     inline bool
00662     operator!=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
00663                const map<_Key,_Tp,_Compare,_Alloc>& __y)
00664     { return !(__x == __y); }
00665 
00666   /// Based on operator<
00667   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00668     inline bool
00669     operator>(const map<_Key,_Tp,_Compare,_Alloc>& __x,
00670               const map<_Key,_Tp,_Compare,_Alloc>& __y)
00671     { return __y < __x; }
00672 
00673   /// Based on operator<
00674   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00675     inline bool
00676     operator<=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
00677                const map<_Key,_Tp,_Compare,_Alloc>& __y)
00678     { return !(__y < __x); }
00679 
00680   /// Based on operator<
00681   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00682     inline bool
00683     operator>=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
00684                const map<_Key,_Tp,_Compare,_Alloc>& __y)
00685     { return !(__x < __y); }
00686 
00687   /// See std::map::swap().
00688   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00689     inline void
00690     swap(map<_Key,_Tp,_Compare,_Alloc>& __x, map<_Key,_Tp,_Compare,_Alloc>& __y)
00691     { __x.swap(__y); }
00692 } // namespace std
00693 
00694 #endif /* _MAP_H */

Generated on Fri May 6 01:09:10 2005 for libstdc++-v3 Source by  doxygen 1.4.2