00001 // Multiset implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001, 2002, 2004 Free Software Foundation, Inc. 00004 // 00005 // This file is part of the GNU ISO C++ Library. This library is free 00006 // software; you can redistribute it and/or modify it under the 00007 // terms of the GNU General Public License as published by the 00008 // Free Software Foundation; either version 2, or (at your option) 00009 // any later version. 00010 00011 // This library is distributed in the hope that it will be useful, 00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 // GNU General Public License for more details. 00015 00016 // You should have received a copy of the GNU General Public License along 00017 // with this library; see the file COPYING. If not, write to the Free 00018 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, 00019 // USA. 00020 00021 // As a special exception, you may use this file as part of a free software 00022 // library without restriction. Specifically, if other files instantiate 00023 // templates or use macros or inline functions from this file, or you compile 00024 // this file and link it with other files to produce an executable, this 00025 // file does not by itself cause the resulting executable to be covered by 00026 // the GNU General Public License. This exception does not however 00027 // invalidate any other reasons why the executable file might be covered by 00028 // the GNU General Public License. 00029 00030 /* 00031 * 00032 * Copyright (c) 1994 00033 * Hewlett-Packard Company 00034 * 00035 * Permission to use, copy, modify, distribute and sell this software 00036 * and its documentation for any purpose is hereby granted without fee, 00037 * provided that the above copyright notice appear in all copies and 00038 * that both that copyright notice and this permission notice appear 00039 * in supporting documentation. Hewlett-Packard Company makes no 00040 * representations about the suitability of this software for any 00041 * purpose. It is provided "as is" without express or implied warranty. 00042 * 00043 * 00044 * Copyright (c) 1996 00045 * Silicon Graphics Computer Systems, Inc. 00046 * 00047 * Permission to use, copy, modify, distribute and sell this software 00048 * and its documentation for any purpose is hereby granted without fee, 00049 * provided that the above copyright notice appear in all copies and 00050 * that both that copyright notice and this permission notice appear 00051 * in supporting documentation. Silicon Graphics makes no 00052 * representations about the suitability of this software for any 00053 * purpose. It is provided "as is" without express or implied warranty. 00054 */ 00055 00056 /** @file stl_multiset.h 00057 * This is an internal header file, included by other library headers. 00058 * You should not attempt to use it directly. 00059 */ 00060 00061 #ifndef _MULTISET_H 00062 #define _MULTISET_H 1 00063 00064 #include <bits/concept_check.h> 00065 00066 namespace _GLIBCXX_STD 00067 { 00068 00069 // Forward declaration of operators < and ==, needed for friend declaration. 00070 template <class _Key, class _Compare = less<_Key>, 00071 class _Alloc = allocator<_Key> > 00072 class multiset; 00073 00074 template <class _Key, class _Compare, class _Alloc> 00075 inline bool 00076 operator==(const multiset<_Key,_Compare,_Alloc>& __x, 00077 const multiset<_Key,_Compare,_Alloc>& __y); 00078 00079 template <class _Key, class _Compare, class _Alloc> 00080 inline bool 00081 operator<(const multiset<_Key,_Compare,_Alloc>& __x, 00082 const multiset<_Key,_Compare,_Alloc>& __y); 00083 00084 /** 00085 * @brief A standard container made up of elements, which can be retrieved 00086 * in logarithmic time. 00087 * 00088 * @ingroup Containers 00089 * @ingroup Assoc_containers 00090 * 00091 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00092 * <a href="tables.html#66">reversible container</a>, and an 00093 * <a href="tables.html#69">associative container</a> (using equivalent 00094 * keys). For a @c multiset<Key> the key_type and value_type are Key. 00095 * 00096 * Multisets support bidirectional iterators. 00097 * 00098 * @if maint 00099 * The private tree data is declared exactly the same way for set and 00100 * multiset; the distinction is made entirely in how the tree functions are 00101 * called (*_unique versus *_equal, same as the standard). 00102 * @endif 00103 */ 00104 template <class _Key, class _Compare, class _Alloc> 00105 class multiset 00106 { 00107 // concept requirements 00108 __glibcxx_class_requires(_Key, _SGIAssignableConcept) 00109 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, 00110 _BinaryFunctionConcept) 00111 00112 public: 00113 // typedefs: 00114 typedef _Key key_type; 00115 typedef _Key value_type; 00116 typedef _Compare key_compare; 00117 typedef _Compare value_compare; 00118 00119 private: 00120 /// @if maint This turns a red-black tree into a [multi]set. @endif 00121 typedef _Rb_tree<key_type, value_type, 00122 _Identity<value_type>, key_compare, _Alloc> _Rep_type; 00123 /// @if maint The actual tree structure. @endif 00124 _Rep_type _M_t; 00125 00126 public: 00127 typedef typename _Alloc::pointer pointer; 00128 typedef typename _Alloc::const_pointer const_pointer; 00129 typedef typename _Alloc::reference reference; 00130 typedef typename _Alloc::const_reference const_reference; 00131 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00132 // DR 103. set::iterator is required to be modifiable, 00133 // but this allows modification of keys. 00134 typedef typename _Rep_type::const_iterator iterator; 00135 typedef typename _Rep_type::const_iterator const_iterator; 00136 typedef typename _Rep_type::const_reverse_iterator reverse_iterator; 00137 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 00138 typedef typename _Rep_type::size_type size_type; 00139 typedef typename _Rep_type::difference_type difference_type; 00140 typedef typename _Rep_type::allocator_type allocator_type; 00141 00142 // allocation/deallocation 00143 00144 /** 00145 * @brief Default constructor creates no elements. 00146 */ 00147 multiset() 00148 : _M_t(_Compare(), allocator_type()) { } 00149 00150 explicit 00151 multiset(const _Compare& __comp, 00152 const allocator_type& __a = allocator_type()) 00153 : _M_t(__comp, __a) { } 00154 00155 /** 00156 * @brief Builds a %multiset from a range. 00157 * @param first An input iterator. 00158 * @param last An input iterator. 00159 * 00160 * Create a %multiset consisting of copies of the elements from 00161 * [first,last). This is linear in N if the range is already sorted, 00162 * and NlogN otherwise (where N is distance(first,last)). 00163 */ 00164 template <class _InputIterator> 00165 multiset(_InputIterator __first, _InputIterator __last) 00166 : _M_t(_Compare(), allocator_type()) 00167 { _M_t.insert_equal(__first, __last); } 00168 00169 /** 00170 * @brief Builds a %multiset from a range. 00171 * @param first An input iterator. 00172 * @param last An input iterator. 00173 * @param comp A comparison functor. 00174 * @param a An allocator object. 00175 * 00176 * Create a %multiset consisting of copies of the elements from 00177 * [first,last). This is linear in N if the range is already sorted, 00178 * and NlogN otherwise (where N is distance(first,last)). 00179 */ 00180 template <class _InputIterator> 00181 multiset(_InputIterator __first, _InputIterator __last, 00182 const _Compare& __comp, 00183 const allocator_type& __a = allocator_type()) 00184 : _M_t(__comp, __a) 00185 { _M_t.insert_equal(__first, __last); } 00186 00187 /** 00188 * @brief %Multiset copy constructor. 00189 * @param x A %multiset of identical element and allocator types. 00190 * 00191 * The newly-created %multiset uses a copy of the allocation object used 00192 * by @a x. 00193 */ 00194 multiset(const multiset<_Key,_Compare,_Alloc>& __x) 00195 : _M_t(__x._M_t) { } 00196 00197 /** 00198 * @brief %Multiset assignment operator. 00199 * @param x A %multiset of identical element and allocator types. 00200 * 00201 * All the elements of @a x are copied, but unlike the copy constructor, 00202 * the allocator object is not copied. 00203 */ 00204 multiset<_Key,_Compare,_Alloc>& 00205 operator=(const multiset<_Key,_Compare,_Alloc>& __x) 00206 { 00207 _M_t = __x._M_t; 00208 return *this; 00209 } 00210 00211 // accessors: 00212 00213 /// Returns the comparison object. 00214 key_compare 00215 key_comp() const 00216 { return _M_t.key_comp(); } 00217 /// Returns the comparison object. 00218 value_compare 00219 value_comp() const 00220 { return _M_t.key_comp(); } 00221 /// Returns the memory allocation object. 00222 allocator_type 00223 get_allocator() const 00224 { return _M_t.get_allocator(); } 00225 00226 /** 00227 * Returns a read/write iterator that points to the first element in the 00228 * %multiset. Iteration is done in ascending order according to the 00229 * keys. 00230 */ 00231 iterator 00232 begin() const 00233 { return _M_t.begin(); } 00234 00235 /** 00236 * Returns a read/write iterator that points one past the last element in 00237 * the %multiset. Iteration is done in ascending order according to the 00238 * keys. 00239 */ 00240 iterator 00241 end() const 00242 { return _M_t.end(); } 00243 00244 /** 00245 * Returns a read/write reverse iterator that points to the last element 00246 * in the %multiset. Iteration is done in descending order according to 00247 * the keys. 00248 */ 00249 reverse_iterator 00250 rbegin() const 00251 { return _M_t.rbegin(); } 00252 00253 /** 00254 * Returns a read/write reverse iterator that points to the last element 00255 * in the %multiset. Iteration is done in descending order according to 00256 * the keys. 00257 */ 00258 reverse_iterator 00259 rend() const 00260 { return _M_t.rend(); } 00261 00262 /// Returns true if the %set is empty. 00263 bool 00264 empty() const 00265 { return _M_t.empty(); } 00266 00267 /// Returns the size of the %set. 00268 size_type 00269 size() const 00270 { return _M_t.size(); } 00271 00272 /// Returns the maximum size of the %set. 00273 size_type 00274 max_size() const 00275 { return _M_t.max_size(); } 00276 00277 /** 00278 * @brief Swaps data with another %multiset. 00279 * @param x A %multiset of the same element and allocator types. 00280 * 00281 * This exchanges the elements between two multisets in constant time. 00282 * (It is only swapping a pointer, an integer, and an instance of the @c 00283 * Compare type (which itself is often stateless and empty), so it should 00284 * be quite fast.) 00285 * Note that the global std::swap() function is specialized such that 00286 * std::swap(s1,s2) will feed to this function. 00287 */ 00288 void 00289 swap(multiset<_Key,_Compare,_Alloc>& __x) 00290 { _M_t.swap(__x._M_t); } 00291 00292 // insert/erase 00293 /** 00294 * @brief Inserts an element into the %multiset. 00295 * @param x Element to be inserted. 00296 * @return An iterator that points to the inserted element. 00297 * 00298 * This function inserts an element into the %multiset. Contrary 00299 * to a std::set the %multiset does not rely on unique keys and thus 00300 * multiple copies of the same element can be inserted. 00301 * 00302 * Insertion requires logarithmic time. 00303 */ 00304 iterator 00305 insert(const value_type& __x) 00306 { return _M_t.insert_equal(__x); } 00307 00308 /** 00309 * @brief Inserts an element into the %multiset. 00310 * @param position An iterator that serves as a hint as to where the 00311 * element should be inserted. 00312 * @param x Element to be inserted. 00313 * @return An iterator that points to the inserted element. 00314 * 00315 * This function inserts an element into the %multiset. Contrary 00316 * to a std::set the %multiset does not rely on unique keys and thus 00317 * multiple copies of the same element can be inserted. 00318 * 00319 * Note that the first parameter is only a hint and can potentially 00320 * improve the performance of the insertion process. A bad hint would 00321 * cause no gains in efficiency. 00322 * 00323 * See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4 00324 * for more on "hinting". 00325 * 00326 * Insertion requires logarithmic time (if the hint is not taken). 00327 */ 00328 iterator 00329 insert(iterator __position, const value_type& __x) 00330 { 00331 typedef typename _Rep_type::iterator _Rep_iterator; 00332 return _M_t.insert_equal((_Rep_iterator&)__position, __x); 00333 } 00334 00335 /** 00336 * @brief A template function that attemps to insert a range of elements. 00337 * @param first Iterator pointing to the start of the range to be 00338 * inserted. 00339 * @param last Iterator pointing to the end of the range. 00340 * 00341 * Complexity similar to that of the range constructor. 00342 */ 00343 template <class _InputIterator> 00344 void 00345 insert(_InputIterator __first, _InputIterator __last) 00346 { _M_t.insert_equal(__first, __last); } 00347 00348 /** 00349 * @brief Erases an element from a %multiset. 00350 * @param position An iterator pointing to the element to be erased. 00351 * 00352 * This function erases an element, pointed to by the given iterator, 00353 * from a %multiset. Note that this function only erases the element, 00354 * and that if the element is itself a pointer, the pointed-to memory is 00355 * not touched in any way. Managing the pointer is the user's 00356 * responsibilty. 00357 */ 00358 void 00359 erase(iterator __position) 00360 { 00361 typedef typename _Rep_type::iterator _Rep_iterator; 00362 _M_t.erase((_Rep_iterator&)__position); 00363 } 00364 00365 /** 00366 * @brief Erases elements according to the provided key. 00367 * @param x Key of element to be erased. 00368 * @return The number of elements erased. 00369 * 00370 * This function erases all elements located by the given key from a 00371 * %multiset. 00372 * Note that this function only erases the element, and that if 00373 * the element is itself a pointer, the pointed-to memory is not touched 00374 * in any way. Managing the pointer is the user's responsibilty. 00375 */ 00376 size_type 00377 erase(const key_type& __x) 00378 { return _M_t.erase(__x); } 00379 00380 /** 00381 * @brief Erases a [first,last) range of elements from a %multiset. 00382 * @param first Iterator pointing to the start of the range to be 00383 * erased. 00384 * @param last Iterator pointing to the end of the range to be erased. 00385 * 00386 * This function erases a sequence of elements from a %multiset. 00387 * Note that this function only erases the elements, and that if 00388 * the elements themselves are pointers, the pointed-to memory is not 00389 * touched in any way. Managing the pointer is the user's responsibilty. 00390 */ 00391 void 00392 erase(iterator __first, iterator __last) 00393 { 00394 typedef typename _Rep_type::iterator _Rep_iterator; 00395 _M_t.erase((_Rep_iterator&)__first, (_Rep_iterator&)__last); 00396 } 00397 00398 /** 00399 * Erases all elements in a %multiset. Note that this function only 00400 * erases the elements, and that if the elements themselves are pointers, 00401 * the pointed-to memory is not touched in any way. Managing the pointer 00402 * is the user's responsibilty. 00403 */ 00404 void 00405 clear() 00406 { _M_t.clear(); } 00407 00408 // multiset operations: 00409 00410 /** 00411 * @brief Finds the number of elements with given key. 00412 * @param x Key of elements to be located. 00413 * @return Number of elements with specified key. 00414 */ 00415 size_type 00416 count(const key_type& __x) const 00417 { return _M_t.count(__x); } 00418 00419 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00420 // 214. set::find() missing const overload 00421 //@{ 00422 /** 00423 * @brief Tries to locate an element in a %set. 00424 * @param x Element to be located. 00425 * @return Iterator pointing to sought-after element, or end() if not 00426 * found. 00427 * 00428 * This function takes a key and tries to locate the element with which 00429 * the key matches. If successful the function returns an iterator 00430 * pointing to the sought after element. If unsuccessful it returns the 00431 * past-the-end ( @c end() ) iterator. 00432 */ 00433 iterator 00434 find(const key_type& __x) 00435 { return _M_t.find(__x); } 00436 00437 const_iterator 00438 find(const key_type& __x) const 00439 { return _M_t.find(__x); } 00440 //@} 00441 00442 //@{ 00443 /** 00444 * @brief Finds the beginning of a subsequence matching given key. 00445 * @param x Key to be located. 00446 * @return Iterator pointing to first element equal to or greater 00447 * than key, or end(). 00448 * 00449 * This function returns the first element of a subsequence of elements 00450 * that matches the given key. If unsuccessful it returns an iterator 00451 * pointing to the first element that has a greater value than given key 00452 * or end() if no such element exists. 00453 */ 00454 iterator 00455 lower_bound(const key_type& __x) 00456 { return _M_t.lower_bound(__x); } 00457 00458 const_iterator 00459 lower_bound(const key_type& __x) const 00460 { return _M_t.lower_bound(__x); } 00461 //@} 00462 00463 //@{ 00464 /** 00465 * @brief Finds the end of a subsequence matching given key. 00466 * @param x Key to be located. 00467 * @return Iterator pointing to the first element 00468 * greater than key, or end(). 00469 */ 00470 iterator 00471 upper_bound(const key_type& __x) 00472 { return _M_t.upper_bound(__x); } 00473 00474 const_iterator 00475 upper_bound(const key_type& __x) const 00476 { return _M_t.upper_bound(__x); } 00477 //@} 00478 00479 //@{ 00480 /** 00481 * @brief Finds a subsequence matching given key. 00482 * @param x Key to be located. 00483 * @return Pair of iterators that possibly points to the subsequence 00484 * matching given key. 00485 * 00486 * This function is equivalent to 00487 * @code 00488 * std::make_pair(c.lower_bound(val), 00489 * c.upper_bound(val)) 00490 * @endcode 00491 * (but is faster than making the calls separately). 00492 * 00493 * This function probably only makes sense for multisets. 00494 */ 00495 pair<iterator,iterator> 00496 equal_range(const key_type& __x) 00497 { return _M_t.equal_range(__x); } 00498 00499 pair<const_iterator,const_iterator> 00500 equal_range(const key_type& __x) const 00501 { return _M_t.equal_range(__x); } 00502 00503 template <class _K1, class _C1, class _A1> 00504 friend bool 00505 operator== (const multiset<_K1,_C1,_A1>&, 00506 const multiset<_K1,_C1,_A1>&); 00507 00508 template <class _K1, class _C1, class _A1> 00509 friend bool 00510 operator< (const multiset<_K1,_C1,_A1>&, 00511 const multiset<_K1,_C1,_A1>&); 00512 }; 00513 00514 /** 00515 * @brief Multiset equality comparison. 00516 * @param x A %multiset. 00517 * @param y A %multiset of the same type as @a x. 00518 * @return True iff the size and elements of the multisets are equal. 00519 * 00520 * This is an equivalence relation. It is linear in the size of the 00521 * multisets. 00522 * Multisets are considered equivalent if their sizes are equal, and if 00523 * corresponding elements compare equal. 00524 */ 00525 template <class _Key, class _Compare, class _Alloc> 00526 inline bool 00527 operator==(const multiset<_Key,_Compare,_Alloc>& __x, 00528 const multiset<_Key,_Compare,_Alloc>& __y) 00529 { return __x._M_t == __y._M_t; } 00530 00531 /** 00532 * @brief Multiset ordering relation. 00533 * @param x A %multiset. 00534 * @param y A %multiset of the same type as @a x. 00535 * @return True iff @a x is lexicographically less than @a y. 00536 * 00537 * This is a total ordering relation. It is linear in the size of the 00538 * maps. The elements must be comparable with @c <. 00539 * 00540 * See std::lexicographical_compare() for how the determination is made. 00541 */ 00542 template <class _Key, class _Compare, class _Alloc> 00543 inline bool 00544 operator<(const multiset<_Key,_Compare,_Alloc>& __x, 00545 const multiset<_Key,_Compare,_Alloc>& __y) 00546 { return __x._M_t < __y._M_t; } 00547 00548 /// Returns !(x == y). 00549 template <class _Key, class _Compare, class _Alloc> 00550 inline bool 00551 operator!=(const multiset<_Key,_Compare,_Alloc>& __x, 00552 const multiset<_Key,_Compare,_Alloc>& __y) 00553 { return !(__x == __y); } 00554 00555 /// Returns y < x. 00556 template <class _Key, class _Compare, class _Alloc> 00557 inline bool 00558 operator>(const multiset<_Key,_Compare,_Alloc>& __x, 00559 const multiset<_Key,_Compare,_Alloc>& __y) 00560 { return __y < __x; } 00561 00562 /// Returns !(y < x) 00563 template <class _Key, class _Compare, class _Alloc> 00564 inline bool 00565 operator<=(const multiset<_Key,_Compare,_Alloc>& __x, 00566 const multiset<_Key,_Compare,_Alloc>& __y) 00567 { return !(__y < __x); } 00568 00569 /// Returns !(x < y) 00570 template <class _Key, class _Compare, class _Alloc> 00571 inline bool 00572 operator>=(const multiset<_Key,_Compare,_Alloc>& __x, 00573 const multiset<_Key,_Compare,_Alloc>& __y) 00574 { return !(__x < __y); } 00575 00576 /// See std::multiset::swap(). 00577 template <class _Key, class _Compare, class _Alloc> 00578 inline void 00579 swap(multiset<_Key,_Compare,_Alloc>& __x, 00580 multiset<_Key,_Compare,_Alloc>& __y) 00581 { __x.swap(__y); } 00582 00583 } // namespace std 00584 00585 #endif /* _MULTISET_H */