stl_set.h

Go to the documentation of this file.
00001 // Set implementation -*- C++ -*-
00002 
00003 // Copyright (C) 2001, 2002, 2004 Free Software Foundation, Inc.
00004 //
00005 // This file is part of the GNU ISO C++ Library.  This library is free
00006 // software; you can redistribute it and/or modify it under the
00007 // terms of the GNU General Public License as published by the
00008 // Free Software Foundation; either version 2, or (at your option)
00009 // any later version.
00010 
00011 // This library is distributed in the hope that it will be useful,
00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00014 // GNU General Public License for more details.
00015 
00016 // You should have received a copy of the GNU General Public License along
00017 // with this library; see the file COPYING.  If not, write to the Free
00018 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
00019 // USA.
00020 
00021 // As a special exception, you may use this file as part of a free software
00022 // library without restriction.  Specifically, if other files instantiate
00023 // templates or use macros or inline functions from this file, or you compile
00024 // this file and link it with other files to produce an executable, this
00025 // file does not by itself cause the resulting executable to be covered by
00026 // the GNU General Public License.  This exception does not however
00027 // invalidate any other reasons why the executable file might be covered by
00028 // the GNU General Public License.
00029 
00030 /*
00031  *
00032  * Copyright (c) 1994
00033  * Hewlett-Packard Company
00034  *
00035  * Permission to use, copy, modify, distribute and sell this software
00036  * and its documentation for any purpose is hereby granted without fee,
00037  * provided that the above copyright notice appear in all copies and
00038  * that both that copyright notice and this permission notice appear
00039  * in supporting documentation.  Hewlett-Packard Company makes no
00040  * representations about the suitability of this software for any
00041  * purpose.  It is provided "as is" without express or implied warranty.
00042  *
00043  *
00044  * Copyright (c) 1996,1997
00045  * Silicon Graphics Computer Systems, Inc.
00046  *
00047  * Permission to use, copy, modify, distribute and sell this software
00048  * and its documentation for any purpose is hereby granted without fee,
00049  * provided that the above copyright notice appear in all copies and
00050  * that both that copyright notice and this permission notice appear
00051  * in supporting documentation.  Silicon Graphics makes no
00052  * representations about the suitability of this software for any
00053  * purpose.  It is provided "as is" without express or implied warranty.
00054  */
00055 
00056 /** @file stl_set.h
00057  *  This is an internal header file, included by other library headers.
00058  *  You should not attempt to use it directly.
00059  */
00060 
00061 #ifndef _SET_H
00062 #define _SET_H 1
00063 
00064 #include <bits/concept_check.h>
00065 
00066 namespace _GLIBCXX_STD
00067 {
00068   // Forward declarations of operators < and ==, needed for friend declaration.
00069   template<class _Key, class _Compare = less<_Key>,
00070        class _Alloc = allocator<_Key> >
00071     class set;
00072 
00073   template<class _Key, class _Compare, class _Alloc>
00074     inline bool
00075     operator==(const set<_Key,_Compare,_Alloc>& __x,
00076            const set<_Key,_Compare,_Alloc>& __y);
00077 
00078   template<class _Key, class _Compare, class _Alloc>
00079     inline bool
00080     operator<(const set<_Key,_Compare,_Alloc>& __x,
00081           const set<_Key,_Compare,_Alloc>& __y);
00082 
00083   /**
00084    *  @brief A standard container made up of unique keys, which can be
00085    *  retrieved in logarithmic time.
00086    *
00087    *  @ingroup Containers
00088    *  @ingroup Assoc_containers
00089    *
00090    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
00091    *  <a href="tables.html#66">reversible container</a>, and an
00092    *  <a href="tables.html#69">associative container</a> (using unique keys).
00093    *
00094    *  Sets support bidirectional iterators.
00095    *
00096    *  @param  Key  Type of key objects.
00097    *  @param  Compare  Comparison function object type, defaults to less<Key>.
00098    *  @param  Alloc  Allocator type, defaults to allocator<Key>.
00099    *
00100    *  @if maint
00101    *  The private tree data is declared exactly the same way for set and
00102    *  multiset; the distinction is made entirely in how the tree functions are
00103    *  called (*_unique versus *_equal, same as the standard).
00104    *  @endif
00105   */
00106   template<class _Key, class _Compare, class _Alloc>
00107     class set
00108     {
00109       // concept requirements
00110       __glibcxx_class_requires(_Key, _SGIAssignableConcept)
00111       __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
00112                 _BinaryFunctionConcept)
00113 
00114     public:
00115       // typedefs:
00116       //@{
00117       /// Public typedefs.
00118       typedef _Key     key_type;
00119       typedef _Key     value_type;
00120       typedef _Compare key_compare;
00121       typedef _Compare value_compare;
00122       //@}
00123 
00124     private:
00125       typedef _Rb_tree<key_type, value_type,
00126                _Identity<value_type>, key_compare, _Alloc> _Rep_type;
00127       _Rep_type _M_t;  // red-black tree representing set
00128     public:
00129       //@{
00130       ///  Iterator-related typedefs.
00131       typedef typename _Alloc::pointer pointer;
00132       typedef typename _Alloc::const_pointer const_pointer;
00133       typedef typename _Alloc::reference reference;
00134       typedef typename _Alloc::const_reference const_reference;
00135       // _GLIBCXX_RESOLVE_LIB_DEFECTS
00136       // DR 103. set::iterator is required to be modifiable,
00137       // but this allows modification of keys.
00138       typedef typename _Rep_type::const_iterator iterator;
00139       typedef typename _Rep_type::const_iterator const_iterator;
00140       typedef typename _Rep_type::const_reverse_iterator reverse_iterator;
00141       typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
00142       typedef typename _Rep_type::size_type size_type;
00143       typedef typename _Rep_type::difference_type difference_type;
00144       typedef typename _Rep_type::allocator_type allocator_type;
00145       //@}
00146 
00147       // allocation/deallocation
00148       ///  Default constructor creates no elements.
00149       set()
00150       : _M_t(_Compare(), allocator_type()) {}
00151 
00152       /**
00153        *  @brief  Default constructor creates no elements.
00154        *
00155        *  @param  comp  Comparator to use.
00156        *  @param  a  Allocator to use.
00157        */
00158       explicit set(const _Compare& __comp,
00159            const allocator_type& __a = allocator_type())
00160       : _M_t(__comp, __a) {}
00161 
00162       /**
00163        *  @brief  Builds a %set from a range.
00164        *  @param  first  An input iterator.
00165        *  @param  last  An input iterator.
00166        *
00167        *  Create a %set consisting of copies of the elements from [first,last).
00168        *  This is linear in N if the range is already sorted, and NlogN
00169        *  otherwise (where N is distance(first,last)).
00170        */
00171       template<class _InputIterator>
00172         set(_InputIterator __first, _InputIterator __last)
00173         : _M_t(_Compare(), allocator_type())
00174         { _M_t.insert_unique(__first, __last); }
00175 
00176       /**
00177        *  @brief  Builds a %set from a range.
00178        *  @param  first  An input iterator.
00179        *  @param  last  An input iterator.
00180        *  @param  comp  A comparison functor.
00181        *  @param  a  An allocator object.
00182        *
00183        *  Create a %set consisting of copies of the elements from [first,last).
00184        *  This is linear in N if the range is already sorted, and NlogN
00185        *  otherwise (where N is distance(first,last)).
00186        */
00187       template<class _InputIterator>
00188         set(_InputIterator __first, _InputIterator __last,
00189         const _Compare& __comp,
00190         const allocator_type& __a = allocator_type())
00191     : _M_t(__comp, __a)
00192         { _M_t.insert_unique(__first, __last); }
00193 
00194       /**
00195        *  @brief  Set copy constructor.
00196        *  @param  x  A %set of identical element and allocator types.
00197        *
00198        *  The newly-created %set uses a copy of the allocation object used
00199        *  by @a x.
00200        */
00201       set(const set<_Key,_Compare,_Alloc>& __x)
00202       : _M_t(__x._M_t) { }
00203 
00204       /**
00205        *  @brief  Set assignment operator.
00206        *  @param  x  A %set of identical element and allocator types.
00207        *
00208        *  All the elements of @a x are copied, but unlike the copy constructor,
00209        *  the allocator object is not copied.
00210        */
00211       set<_Key,_Compare,_Alloc>&
00212       operator=(const set<_Key, _Compare, _Alloc>& __x)
00213       {
00214     _M_t = __x._M_t;
00215     return *this;
00216       }
00217 
00218       // accessors:
00219 
00220       ///  Returns the comparison object with which the %set was constructed.
00221       key_compare
00222       key_comp() const
00223       { return _M_t.key_comp(); }
00224       ///  Returns the comparison object with which the %set was constructed.
00225       value_compare
00226       value_comp() const
00227       { return _M_t.key_comp(); }
00228       ///  Returns the allocator object with which the %set was constructed.
00229       allocator_type
00230       get_allocator() const
00231       { return _M_t.get_allocator(); }
00232 
00233       /**
00234        *  Returns a read/write iterator that points to the first element in the
00235        *  %set.  Iteration is done in ascending order according to the keys.
00236        */
00237       iterator
00238       begin() const
00239       { return _M_t.begin(); }
00240 
00241       /**
00242        *  Returns a read/write iterator that points one past the last element in
00243        *  the %set.  Iteration is done in ascending order according to the keys.
00244        */
00245       iterator
00246       end() const
00247       { return _M_t.end(); }
00248 
00249       /**
00250        *  Returns a read/write reverse iterator that points to the last element
00251        *  in the %set.  Iteration is done in descending order according to the
00252        *  keys.
00253        */
00254       reverse_iterator
00255       rbegin() const
00256       { return _M_t.rbegin(); }
00257 
00258       /**
00259        *  Returns a read-only (constant) reverse iterator that points to the
00260        *  last pair in the %map.  Iteration is done in descending order
00261        *  according to the keys.
00262        */
00263       reverse_iterator
00264       rend() const
00265       { return _M_t.rend(); }
00266 
00267       ///  Returns true if the %set is empty.
00268       bool
00269       empty() const
00270       { return _M_t.empty(); }
00271 
00272       ///  Returns the size of the %set.
00273       size_type
00274       size() const
00275       { return _M_t.size(); }
00276 
00277       ///  Returns the maximum size of the %set.
00278       size_type
00279       max_size() const
00280       { return _M_t.max_size(); }
00281 
00282       /**
00283        *  @brief  Swaps data with another %set.
00284        *  @param  x  A %set of the same element and allocator types.
00285        *
00286        *  This exchanges the elements between two sets in constant time.
00287        *  (It is only swapping a pointer, an integer, and an instance of
00288        *  the @c Compare type (which itself is often stateless and empty), so it
00289        *  should be quite fast.)
00290        *  Note that the global std::swap() function is specialized such that
00291        *  std::swap(s1,s2) will feed to this function.
00292        */
00293       void
00294       swap(set<_Key,_Compare,_Alloc>& __x)
00295       { _M_t.swap(__x._M_t); }
00296 
00297       // insert/erase
00298       /**
00299        *  @brief Attempts to insert an element into the %set.
00300        *  @param  x  Element to be inserted.
00301        *  @return  A pair, of which the first element is an iterator that points
00302        *           to the possibly inserted element, and the second is a bool
00303        *           that is true if the element was actually inserted.
00304        *
00305        *  This function attempts to insert an element into the %set.  A %set
00306        *  relies on unique keys and thus an element is only inserted if it is
00307        *  not already present in the %set.
00308        *
00309        *  Insertion requires logarithmic time.
00310        */
00311       pair<iterator,bool>
00312       insert(const value_type& __x)
00313       {
00314     pair<typename _Rep_type::iterator, bool> __p = _M_t.insert_unique(__x);
00315     return pair<iterator, bool>(__p.first, __p.second);
00316       }
00317 
00318       /**
00319        *  @brief Attempts to insert an element into the %set.
00320        *  @param  position  An iterator that serves as a hint as to where the
00321        *                    element should be inserted.
00322        *  @param  x  Element to be inserted.
00323        *  @return  An iterator that points to the element with key of @a x (may
00324        *           or may not be the element passed in).
00325        *
00326        *  This function is not concerned about whether the insertion took place,
00327        *  and thus does not return a boolean like the single-argument insert()
00328        *  does.  Note that the first parameter is only a hint and can
00329        *  potentially improve the performance of the insertion process.  A bad
00330        *  hint would cause no gains in efficiency.
00331        *
00332        *  See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
00333        *  for more on "hinting".
00334        *
00335        *  Insertion requires logarithmic time (if the hint is not taken).
00336        */
00337       iterator
00338       insert(iterator __position, const value_type& __x)
00339       {
00340     typedef typename _Rep_type::iterator _Rep_iterator;
00341     return _M_t.insert_unique((_Rep_iterator&)__position, __x);
00342       }
00343 
00344       /**
00345        *  @brief A template function that attemps to insert a range of elements.
00346        *  @param  first  Iterator pointing to the start of the range to be
00347        *                 inserted.
00348        *  @param  last  Iterator pointing to the end of the range.
00349        *
00350        *  Complexity similar to that of the range constructor.
00351        */
00352       template<class _InputIterator>
00353       void
00354       insert(_InputIterator __first, _InputIterator __last)
00355       { _M_t.insert_unique(__first, __last); }
00356 
00357       /**
00358        *  @brief Erases an element from a %set.
00359        *  @param  position  An iterator pointing to the element to be erased.
00360        *
00361        *  This function erases an element, pointed to by the given iterator,
00362        *  from a %set.  Note that this function only erases the element, and
00363        *  that if the element is itself a pointer, the pointed-to memory is not
00364        *  touched in any way.  Managing the pointer is the user's responsibilty.
00365        */
00366       void
00367       erase(iterator __position)
00368       {
00369     typedef typename _Rep_type::iterator _Rep_iterator;
00370     _M_t.erase((_Rep_iterator&)__position);
00371       }
00372 
00373       /**
00374        *  @brief Erases elements according to the provided key.
00375        *  @param  x  Key of element to be erased.
00376        *  @return  The number of elements erased.
00377        *
00378        *  This function erases all the elements located by the given key from
00379        *  a %set.
00380        *  Note that this function only erases the element, and that if
00381        *  the element is itself a pointer, the pointed-to memory is not touched
00382        *  in any way.  Managing the pointer is the user's responsibilty.
00383        */
00384       size_type
00385       erase(const key_type& __x) { return _M_t.erase(__x); }
00386 
00387       /**
00388        *  @brief Erases a [first,last) range of elements from a %set.
00389        *  @param  first  Iterator pointing to the start of the range to be
00390        *                 erased.
00391        *  @param  last  Iterator pointing to the end of the range to be erased.
00392        *
00393        *  This function erases a sequence of elements from a %set.
00394        *  Note that this function only erases the element, and that if
00395        *  the element is itself a pointer, the pointed-to memory is not touched
00396        *  in any way.  Managing the pointer is the user's responsibilty.
00397        */
00398       void
00399       erase(iterator __first, iterator __last)
00400       {
00401     typedef typename _Rep_type::iterator _Rep_iterator;
00402     _M_t.erase((_Rep_iterator&)__first, (_Rep_iterator&)__last);
00403       }
00404 
00405       /**
00406        *  Erases all elements in a %set.  Note that this function only erases
00407        *  the elements, and that if the elements themselves are pointers, the
00408        *  pointed-to memory is not touched in any way.  Managing the pointer is
00409        *  the user's responsibilty.
00410        */
00411       void
00412       clear()
00413       { _M_t.clear(); }
00414 
00415       // set operations:
00416 
00417       /**
00418        *  @brief  Finds the number of elements.
00419        *  @param  x  Element to located.
00420        *  @return  Number of elements with specified key.
00421        *
00422        *  This function only makes sense for multisets; for set the result will
00423        *  either be 0 (not present) or 1 (present).
00424        */
00425       size_type
00426       count(const key_type& __x) const
00427       { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
00428 
00429       // _GLIBCXX_RESOLVE_LIB_DEFECTS
00430       // 214.  set::find() missing const overload
00431       //@{
00432       /**
00433        *  @brief Tries to locate an element in a %set.
00434        *  @param  x  Element to be located.
00435        *  @return  Iterator pointing to sought-after element, or end() if not
00436        *           found.
00437        *
00438        *  This function takes a key and tries to locate the element with which
00439        *  the key matches.  If successful the function returns an iterator
00440        *  pointing to the sought after element.  If unsuccessful it returns the
00441        *  past-the-end ( @c end() ) iterator.
00442        */
00443       iterator
00444       find(const key_type& __x)
00445       { return _M_t.find(__x); }
00446 
00447       const_iterator
00448       find(const key_type& __x) const
00449       { return _M_t.find(__x); }
00450       //@}
00451 
00452       //@{
00453       /**
00454        *  @brief Finds the beginning of a subsequence matching given key.
00455        *  @param  x  Key to be located.
00456        *  @return  Iterator pointing to first element equal to or greater
00457        *           than key, or end().
00458        *
00459        *  This function returns the first element of a subsequence of elements
00460        *  that matches the given key.  If unsuccessful it returns an iterator
00461        *  pointing to the first element that has a greater value than given key
00462        *  or end() if no such element exists.
00463        */
00464       iterator
00465       lower_bound(const key_type& __x)
00466       { return _M_t.lower_bound(__x); }
00467 
00468       const_iterator
00469       lower_bound(const key_type& __x) const
00470       { return _M_t.lower_bound(__x); }
00471       //@}
00472 
00473       //@{
00474       /**
00475        *  @brief Finds the end of a subsequence matching given key.
00476        *  @param  x  Key to be located.
00477        *  @return Iterator pointing to the first element
00478        *          greater than key, or end().
00479        */
00480       iterator
00481       upper_bound(const key_type& __x)
00482       { return _M_t.upper_bound(__x); }
00483 
00484       const_iterator
00485       upper_bound(const key_type& __x) const
00486       { return _M_t.upper_bound(__x); }
00487       //@}
00488 
00489       //@{
00490       /**
00491        *  @brief Finds a subsequence matching given key.
00492        *  @param  x  Key to be located.
00493        *  @return  Pair of iterators that possibly points to the subsequence
00494        *           matching given key.
00495        *
00496        *  This function is equivalent to
00497        *  @code
00498        *    std::make_pair(c.lower_bound(val),
00499        *                   c.upper_bound(val))
00500        *  @endcode
00501        *  (but is faster than making the calls separately).
00502        *
00503        *  This function probably only makes sense for multisets.
00504        */
00505       pair<iterator,iterator>
00506       equal_range(const key_type& __x)
00507       { return _M_t.equal_range(__x); }
00508 
00509       pair<const_iterator,const_iterator>
00510       equal_range(const key_type& __x) const
00511       { return _M_t.equal_range(__x); }
00512       //@}
00513 
00514       template<class _K1, class _C1, class _A1>
00515         friend bool
00516         operator== (const set<_K1,_C1,_A1>&, const set<_K1,_C1,_A1>&);
00517 
00518       template<class _K1, class _C1, class _A1>
00519         friend bool
00520         operator< (const set<_K1,_C1,_A1>&, const set<_K1,_C1,_A1>&);
00521     };
00522 
00523 
00524   /**
00525    *  @brief  Set equality comparison.
00526    *  @param  x  A %set.
00527    *  @param  y  A %set of the same type as @a x.
00528    *  @return  True iff the size and elements of the sets are equal.
00529    *
00530    *  This is an equivalence relation.  It is linear in the size of the sets.
00531    *  Sets are considered equivalent if their sizes are equal, and if
00532    *  corresponding elements compare equal.
00533   */
00534   template<class _Key, class _Compare, class _Alloc>
00535     inline bool
00536     operator==(const set<_Key,_Compare,_Alloc>& __x,
00537            const set<_Key,_Compare,_Alloc>& __y)
00538     { return __x._M_t == __y._M_t; }
00539 
00540   /**
00541    *  @brief  Set ordering relation.
00542    *  @param  x  A %set.
00543    *  @param  y  A %set of the same type as @a x.
00544    *  @return  True iff @a x is lexicographically less than @a y.
00545    *
00546    *  This is a total ordering relation.  It is linear in the size of the
00547    *  maps.  The elements must be comparable with @c <.
00548    *
00549    *  See std::lexicographical_compare() for how the determination is made.
00550   */
00551   template<class _Key, class _Compare, class _Alloc>
00552     inline bool
00553     operator<(const set<_Key,_Compare,_Alloc>& __x,
00554           const set<_Key,_Compare,_Alloc>& __y)
00555     { return __x._M_t < __y._M_t; }
00556 
00557   ///  Returns !(x == y).
00558   template<class _Key, class _Compare, class _Alloc>
00559     inline bool
00560     operator!=(const set<_Key,_Compare,_Alloc>& __x,
00561            const set<_Key,_Compare,_Alloc>& __y)
00562     { return !(__x == __y); }
00563 
00564   ///  Returns y < x.
00565   template<class _Key, class _Compare, class _Alloc>
00566     inline bool
00567     operator>(const set<_Key,_Compare,_Alloc>& __x,
00568           const set<_Key,_Compare,_Alloc>& __y)
00569     { return __y < __x; }
00570 
00571   ///  Returns !(y < x)
00572   template<class _Key, class _Compare, class _Alloc>
00573     inline bool
00574     operator<=(const set<_Key,_Compare,_Alloc>& __x,
00575            const set<_Key,_Compare,_Alloc>& __y)
00576     { return !(__y < __x); }
00577 
00578   ///  Returns !(x < y)
00579   template<class _Key, class _Compare, class _Alloc>
00580     inline bool
00581     operator>=(const set<_Key,_Compare,_Alloc>& __x,
00582            const set<_Key,_Compare,_Alloc>& __y)
00583     { return !(__x < __y); }
00584 
00585   /// See std::set::swap().
00586   template<class _Key, class _Compare, class _Alloc>
00587     inline void
00588     swap(set<_Key,_Compare,_Alloc>& __x, set<_Key,_Compare,_Alloc>& __y)
00589     { __x.swap(__y); }
00590 
00591 } // namespace std
00592 
00593 #endif /* _SET_H */

Generated on Fri May 6 01:09:12 2005 for libstdc++-v3 Source by  doxygen 1.4.2