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Abstract

Our goal is to use the vast repositories of avail-
able open source code to generate specific functions or
classes that meet a user’s specifications. The key
words here are specifications and generate. We let
users specify what they are looking for as precisely as
possible using keywords, class or method signatures,
test cases, contracts, and security constraints. Our
system then uses an open set of program transforma-
tions to map retrieved code into what the user asked
for. This approach is implemented in a prototype sys-
tem for Java with a web interface.

1.  Motivation
One of the first things a programmer should do

when writing new code is to find existing, working
code with the same functionality, and reuse as much of
that code as possible. With the large amount of open-
source code available and the fact that most applica-
tions are not completely novel, one could imagine that
a significant amount of the code that is being written
today has been written before and is available in an
open-source repository.

Unfortunately, very little open-source code is
reused in this way. There are several reasons for this.
The first is that equivalent code is difficult to find.
Today’s code search engines, for example Google
(codesearch.google.com), Koders (koders.com), and
Krugle (krugle.org), offer only a keyword-based search
and file-level retrieval and generally have limited
utility in looking for appropriate code fragments for a
particular application. The second problem is that the
identified code rarely meets the user’s requirements. It
might not compute the same function or do the right
thing, it might have security or privacy problems, it
might be too complex to be understood or reused, it
might be too slow, or it might take slightly different
parameters or return slightly different values. More-
over, determining these differences is up to the pro-
grammer and requires understanding the retrieved
code, a difficult task, especially if there are hundreds of
poorly-documented search results. The third problem is
that even when code can be found that meets one’s

requirements, that code still has to be modified and
adapted by the programmer. Overall, programmers
often feel that the effort required here is more than the
effort of writing the code in the first place.

The problem of software reuse is an old one,
dating back to the 1960’s [21,24,25]. There are several
aspects of reuse that make it a difficult problem. These
include creating reusable code, finding code to reuse,
and adapting reusable code to the new application.
Each of these problems has been tackled in various
ways, but there has not been a comprehensive solution
that has really worked. The current state-of-the-art, as
seen in the various code search engines cited above,
ignores much of this previous work because it was
impractical either from the provider’s or the requester’s
point of view.

The use of program semantics in searching for
reusable components was common in the 1990s. Origi-
nally, this work by Wing looked at matching function
signatures [41], but was extended to matching more
complete formal semantics using λprolog and Larch-
based specifications [31]. More recent work in this area
includes the specification language of the CARE
system [16], a relation-based approach that relied on
semantics-based indexing [26], and a contract-based
approach [18]. Other work in this area looked at the use
of type systems for specification [32]. Another seman-
tic approach involved defining the behavior to searched
for. This was originally given as input-output pairs
[28], and then generalized to allow slightly more flexi-
ble specifications [7,15]. More recent work in this area
includes PARSEWeb that does static analysis on code
fragments found by a text-based code search engine
and then looks at input-output types [34]. These
approaches generally are aimed at function level reuse.
Other techniques such as program patterns [27] and
keyword programming [20] are designed to work at the
level of a code fragment.

These early techniques did not really succeed
because either they attempted to do too little or because
they attempted to do too much. Signature or type
matching does not really find items of interest,
although PARSEWeb shows that in combination with
textual search it can be somewhat effective. Full
semantic matching requires the user to specify too



much and is quite difficult to accomplish, with the
general problem being unsolvable and even approxi-
mations typically requiring the use of a theorem prover
or similar technology. Our approach uses test cases and
other programmer-friendly partial specifications that
are generally easy to check and easier to provide.

A recent test-driven approach is CodeGenie [19].
This system lets the user define test cases as part of the
development process in Eclipse and then uses the
method names and signatures from the test case to
build a query. It uses an internal search engine that
understands program structure to find code to test and
then presents the result to the user. Where this
approach concentrates on using the test cases to gener-
ate a complex structured query that will pinpoint exact
code that should work, our approach uses keywords to
find candidates, uses transformations to expand the
potential pool of solutions, and then uses semantics to
restrict that pool. Test cases and semantics have also
been used in a similar fashion for finding web services
[11,29].

Current code search tools are based on information
retrieval techniques. Early work here demonstrated that
keywords from comments and variable names were
often sufficient for finding reusable routines [12,22].
Later work here did query refinement either directly
[33], by looking at what the programmer was doing
[39,40], using an appropriate ontology [38], using
learning techniques [10], using natural language [8], or
using collaborative feedback [35]. Recent approaches,
such as Assieme [17], Sorcerer [1], and Codifier [4],
incorporate program structure and semantics as a
search basis. The utility of many of these techniques
can be seen in their use in today’s web-based search
engines. However, these techniques do not yield exact
or semantically correct matches, one of the primary
problems associated with attempting to reuse software.

2.  Our approach
Our approach is to take a set of candidate solu-

tions, attempt to transform that set into a more appro-
priate set, check the resultant set against the user’s
specifications, and then output all solutions that meet
these specifications. The actual logical architecture is
shown in Figure 1.

The system starts and ends with the user interface.
This is responsible for gathering the user’s specifica-
tions, initiating the search, and when done, displaying
the formatted results. The first step in the search is to
use keywords that describe the item being searched for
to obtain a set of initial solutions. A suite of program
transformations is then applied recursively to these
solutions to obtain a more complete set of candidate
solutions. These solutions are then restricted by elimi-
nating any that don’t match static specifications such as
the signature. The next step is to augment each solution
with additional dependent code from the original file.

The resultant set of test solutions are then checked
against dynamic specifications such as test cases to see
if they meet the user’s criteria. Additional transforma-
tions can then be applied based on the result of testing.
Finally, all solutions that meet the specifications are
formatted using our prior work on adaptive formatting
[30] and presented through the user interface.

Our central contributions are the use of both static
and dynamic specifications to characterize the search
and the use of transformations to modify and adapt the
result of the initial search to meet the user’s needs. In
the next section we describe our specifications, how
they are collected and how they are used. Section 5.
then describes the various transformations and the
strategies for keeping the set of potential solutions trac-
table. Section 6. describes the process of checking the
specifications. The subsequent sections describes our
experiences, results, and future work.

3.  Specifying what to search for
The key to intelligent code search is to let users

specify what they are searching for as precisely as pos-
sible. This means that they need to provide both the
syntax and the semantics of their target. Moreover,
these specifications must be easy for the user to pro-
vide; it shouldn’t take longer to define what is needed
than to write the actual code. Finally, the specifications
should be incremental. The user should be able to
easily augment or change the specifications based on
the output that the original descriptions produced.

To meet these requirements we divided the specifi-
cations into separate sections and developed a web-
based user interface to support them. We start with
static specifications including a description of the
target class or method and the target signature. We next
include dynamic specifications through the use of test
cases and, optionally, contracts.

The static specifications are given in two parts.
The first is a natural language description of the class
or method. Because users are accustomed to today’s
search engines, this is done through one or more sets of
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keywords. The second part of the static specification is
the class or method signature.

A description and signature alone are not enough
to specify the functionality of the target code. To do
this precisely, one must provide a semantic definition.
Such definitions take a variety of forms. Natural lan-
guage semantics are too vague to be useful here. Math-
ematical languages such as Z [37] or Larch [14] are
another alternative. These however are still difficult to
write and more difficult to get correct, even for rela-
tively simple processes. A more widely used approach
is to use contracts as introduced in Eiffel [23]. Con-
tracts are typically expressed in the form of precondi-
tions and postconditions on methods or as conditions
on a class. More recently, dynamic contracts have been
used to specify the ordering and behavior of sets of
methods of classes [3]. Contracts are relatively easy to
specify, but they don’t fully capture the semantics or
the intent of the interface. Another solution can be
found in the agile or extreme programming approach to
development where test cases are developed first and
the implementation is tested continually.

Of these various forms, test cases are generally the
easiest for the user to provide. Moreover, they are
nicely incremental in that users can look at the func-
tions that pass the given test cases and, if they are not
what they were looking for, they can add further test
cases. Thus, the first part of our semantic specification
is a suite of test cases. For methods, our approach lets
these be given in the form of input-output pairs, code
fragments, or external files. For the input-output pairs
we support both types of object equivalence as well as
expected exceptions. For classes, we support call
sequences. Here each call invokes one of the methods
in the signature, and the results of the call can be saved
for future calls, checked or ignored.

In addition to test cases, we allow contract specifi-
cations. Here we use JML [5] as the definition lan-
guage, letting the user define method preconditions and
postconditions.

Contracts and test cases only define the functional
aspects of semantics. Programmers typically care about
many other dimensions of their code including privacy,
security, threading behavior, complexity, and perfor-
mance. Our goal is to handle these additional dimen-
sions either directly as part of the specifications or
indirectly as part of the selection and presentation pro-
cess.

We currently support the specification of security
constraints on the methods and classes that are being
searched for. This is done using the Java security
model [13]. The user can specify Java security condi-
tions for files, sockets, AWT/Swing, system properties,
and run time behaviors. Other nonfunctional semantics
are supported by letting the user sort the resultant code
fragments by code size, code complexity, or perfor-
mance on the test cases.

Our initial front end is web-based, built using the
Google Web Toolkit [9]; it can be seen in Figure 2. At
the top of the window the user indicates whether they
are looking for a class or a method, whether to look
locally or using on the web, and if on the web, which
external code search engine to use. The user also pro-
vides keywords much as they would for existing search
engines.

Below this is a box where the user provides the
actual semantics describing the target. Here the user
first provides the signature. The signature is checked
by the server and updated with full type names and
parameter names if necessary. Below the signature, the
user can enter test cases. The CALL type test cases
shown here let the user set the parameters and the
expected return value. The system supports abbreviated
syntax for arrays, collections and maps, doesn’t require
quoted strings, and also lets the user enter appropriate
code fragments. The code entered is semantically
checked by the back end before the search.

Contracts and security constraints are entered by
clicking on the appropriate button in the method box
and filling in the resultant forms.

The results are displayed at the bottom of the
window. Here the user can change the sort order and
the formatting style. The result display includes the
code source and the licensing or copyright information.

The interface is designed to be adaptable so that
the user can easily add a new test case or change the
keywords and see the modified results.

4.  Finding the initial solutions
The first step in using this semantic information is

to find an initial set of candidate solutions. A solution
in our system consists of 1) the abstract syntax tree for
the file the target is derived from; 2) the node in this
syntax tree corresponding to the target method or class;
3) a set of auxiliary abstract syntax tree nodes needed
to resolve dependencies; 4) a set of flags describing the
solution state; and 5) a score.

We use Eclipse to build the basic abstract syntax
trees. We have our own semantic analyzer operating
over these trees and adding annotations representing
type, method, and variable definitions and uses. This
was needed because we needed to work outside of an
Eclipse project, we needed an analyzer that was very
forgiving since we are essentially compiling files
without the proper compilation context, and we needed
to maintain multiple representations of the same class.

While solutions are represented as abstract syntax
trees, only the initial solutions are stored that way to
save memory. Any derived solution is stored as a text
delta from its predecessor, and the corresponding
abstract syntax tree is generated on demand and cached
while the solution is being processed.

The initial set of candidate solutions is obtained by
using a code search engine to find a set of files that



match the user-specified keywords. This is done for the
Google, Krugle, and Koders web code search engines.
using modules that simulate a query, interpret the
results, and then obtain the actual source files for the
first 100-200 reported matches. In addition, we have
developed our own desktop code search engine, Labra-
dor, based on Compass [2], for local search.

For each selected file, we extract a set of initial
solutions. When searching for a method, this is the set
of all methods in the file that have associated code. For
a class, it is the set of all classes or inner classes in the
file. We set the score of the solution to be the rank of
the original file in the search results.

5.  Transformations
The next step is to take this initial set of solutions

and expand it to produce solutions that match the user’s
specifications. This is done using transformations.

A transformation is a mapping from a solution to a
possibly empty set of additional solutions. It consists
of a name, a set of conditions that determine when the
transformation is applicable, and a set of mapping
objects, each of which takes the abstract syntax tree of
the original solution and produces an edited tree repre-
senting a new solution. The conditions are used to
control the potential exponential blowup in the number
of solutions to consider. Editing is accomplished using
Eclipse’s abstract syntax tree rewriting capabilities.

The set of transformations was chosen to let the
system extract, convert, and otherwise manipulate the
initial solutions into a form that meets the program-
mer’s specifications. While most of the transformations
preserve the original semantics, some will change the
program’s behavior. Because all solutions are eventu-
ally tested, this is not a problem. Moreover, these trans-
formations have proven themselves useful.

5.1  Signature transforms

The set of transformations can be divided into dif-
ferent groups. The first group include the simple trans-
formations that are needed to make the solution
conform to the given signature. These include:
NAME: This transformation refactors the name of the
candidate method to the name given by the input if the
return type, parameters, and exceptions thrown for the
method match the required signature.
RETURN: This transformation changes the return
type of the candidate method to that of the given signa-
ture. It can only be applied if the parameter types are
correct, and if the desired return type is either void or is
compatible with the declared type.
PARAMETER TYPES: This transformation will
replace the parameter types of the candidate method
with types from the signature if they are compatible.

FIGURE 2. Code search web-based user interface.



PARAMETER ORDER: This transformation will
change the order of the parameters for the candidate
method for all orders that match the signature types.
EXCEPTION: This transformation will change the
exception types from those given in the original code to
those given by the signature. It both changes the
method declaration and any internal throw statements
as needed. It is only applied if the method has the
correct parameter types and return type and if there are
no internal calls that would require an exception to be
thrown.
STATIC: This transformation will convert the given
method to a static method if that is what is required by
the signature and if the method does not access any
non-static fields or methods.

While the above transformations are described in
terms of methods, they also work for solutions that rep-
resent classes. In the class case, each transformation is
applied for each pairing of a method of the class and
method signature for the class.

5.2  Generative transforms

The second set of transformations are designed to
build new solutions from existing code. These are
central to the generative techniques that are the focus
of our search strategy. More often then not, the func-
tionality that one programmer wants as a single func-
tion does not match exactly what another programmer
has done. Code for tokenizing command line argu-
ments can be hidden in a routine that both computes
the tokenization and executes the result; a program that
generates roman numerals might take extra parameters
indicating whether to use upper or lower case and how
to handle special cases such as four; an algorithm
might be specialized for a specific class in the original
application, but could have been made generic.

The transformations we have defined are able to
handle these and related cases. As we uncover more
variations that are needed, new generative transforma-
tions can be added. These transformations include:
CHUNK: This transformation attempts to find seg-
ments of the candidate method that might meet the
user’s specifications. The motivation here is that the
desired functionality might be a subset of a method
rather than the whole method.

This transform works in stages. It first identifies all
the variables used in the method and their types. Next it
determines for each top-level statement of the method
which variables are set, which variables are created,
and which variables are used. From this information it
is able to identify the set of statements that set a value
of return type. For each such statement, the transforma-
tion effectively does a backward slice, adding prior
statements that are required one by one. After each
statement is added, the set of open variables is checked.
If this set only contains variables of the desired param-

eterized types, then a new method is created with the
dependent statements and the target statement. When
creating this method the transformation handles adding
any required declarations and initialization, changing
return statements appropriately, and setting up the
proper method signature and body.
EXTRA PARAMETERS: This transformation looks
for methods that have the proper return type, have
parameters that include the target types, and have extra
parameters. It replaces each of the extra parameters
with an initial assignment statement.

The tricky part of this transformation is determin-
ing what value to assign to the replaced parameter. This
is done based on the parameter type and on the con-
tents of the method. For boolean parameters, both true
and false are tried; for numeric types, both 1 and 0 are
tried; for object types null is used. If an array or collec-
tion is being passed, then its size is used. In addition,
the code for the method is scanned to look for condi-
tionals and switch statements that involve the given
value. Any values used in those comparisons are also
tried as candidate replacements.
GENERALIZE: This transformation attempts to
replace user-defined types throughout a class with the
types used in the user’s specifications. For example, if
the actual code works on an internal class, but the spec-
ifications asked for an instance of java.lang.Object or
java.lang.String, this transformation would attempt to
change the method to use the system class. This is done
by first checking if the actual class used in the code can
be generalized by seeing if its methods and fields are
actually used in the identified method.

5.3  Compilation transforms

The third set of transformations are used to make
the code compile correctly in the test environment.
These transformation can also be viewed as generative
in that they attempt to adapt the original code to meet
the new environment by removing unnecessary func-
tionality or ensuring existing functionality is consistent
with what the user wants. The current transformations
here include:
IMPLEMENTS: This transformation removes
unneeded implements clauses on the target class. This
is required since the system will eliminate methods that
are not part or required by the user’s specification.
REMOVE UNDEF: This transformation removes
any statements from the candidate method that access
undefined fields, methods or classes. It will not remove
return statements or the last statement in a method.
This transformation has been useful in eliminating
extra statements used for debugging, logging, and addi-
tional error checking from otherwise acceptable code.
STATIC CLASS: This transformation ensures that all
target classes are static classes, even if they were
derived from an internal non-static class.



THROW: This transformation replaces throw state-
ments in the code that throw exceptions that are not
part of the user’s defined signature either with excep-
tions that the user has declared or with java.lang.Error.

5.4  Testing transforms

The final set of transformations are applied after
testing and attempt to modify the method based on the
test results. The one transformation here handles a
variety of different cases:
FIX RETURN: This transformation looks at the test
results and checks if there is a simple transformation
that will convert the actual results into the desired ones.
Currently it handles inverting boolean returns, chang-
ing the case of string results, and the addition of a con-
stant value to integer results. Multiple test cases are
required for the boolean and numeric transforms.

5.5  Transform application

The transformations are applied repeatedly in
stages to the set of solutions until no new solutions are
found. Each solution is only considered once during
each stage. When it is considered, all the potential
transformations for that stage are applied, and then the
solution is checked to see if it should be retained or dis-
carded. The number of solutions produced by each
stage is kept under control by using the appropriate
conditions on the transformations, eliminating dupli-
cate solutions, and removing infeasible solutions after
they have been candidates for transformation.

We currently support three stages. The initial stage
handles transformations that involve basic setup such
as STATIC CLASS. Solutions are eliminated here only
if they directly involve non-static classes.The normal
stage handles the other transformations except for FIX
RETURN. Solutions that don’t match the specified sig-
nature are eliminated at this point after they are consid-
ered by all available transformations. The final stage
involves transformations based on test results such as
FIX RETURN. Transformations that did not pass the
test cases are eliminated here after they have been con-
sidered by this transformation.

Another approach used to keeping the number of
solutions under control is to limit the number of active
solutions at each phase. We limit the number of initial
solutions (4000), and the number of solutions that
remain active during the normal stage (1000), as well
as the number of solutions that will actually be tested
(250). Where there are more potential solutions, the
score associated with the solution is used for elimina-
tion. In practice, these limits are rarely reached.

6.  Testing
The result of applying all but the final stage of

transformations is a set of solutions that have the signa-

ture specified by the user. The next stage in our system
involves seeing if these potential solutions pass the test
cases, contracts, and other semantic conditions given
by the user.

In order to do testing however, we need to first
ensure that the identified code will compile. This is
done during a dependency analysis phase.

This phase serves multiple purposes. Its primary
aim is to use information from the abstract syntax tree
to identify transitively any helper methods, inner
classes, and fields that are referenced by the target
code. If the user is searching for a method, these are
added to the solution. If the user is searching for a
class, the system has identified a class that has at least
the methods provided by the user. In this case, the job
of dependency analysis is to remove from the class all
declarations that are not required by the solution.

Another job of dependency analysis is to eliminate
any solutions that will not compile because they
contain undefined references. The final job of this anal-
ysis is to identify the set of system classes that are used
by the code so that appropriate import statements can
be generated for compilation and testing.

The actual testing is done by generating a Java
source file containing the identified code, the identified
helper code, imports clauses, and the test cases, and
then using ant and junit.

Contract checking is handled during this testing
process. First, the contract information associated with
a method is inserted as JML annotations in the appro-
priate code. Second, jmlc is used to compile. Then the
tests are run using the appropriate JML libraries.

Each tested solution is examined to see if it suc-
ceeded or if it failed due to compilation errors, testing
errors, or just failed test cases. The FIX RETURN
transformation is applied to any solution where all the
test cases ran, but some failed. Any new solutions that
this transformation then builds are tested in a new
dependency and testing pass.

7.  Experience
We have used our code search system for a variety

of different examples some of which are shown in
Table 1. While most of these cases are searching for a
particular method, the last three, as noted by their sig-
natures, are searching for a class.

The two tokenize examples define a function that
takes a string and divides it into words. The second one
handles both single and double quotes as would be
done on a shell command line. This can be seen in the
test cases shown in Table 2. The robots.txt example is
looking for a function that checks robots.txt for a URL
to see if that URL is crawlable.

One thing to note from these examples is the small
number of test cases that are sufficient for searching.
The use of keywords limits the search to files that
might be relevant. The odds of a random function



returning the right results in these cases is quite small.
So far we have found that about one solution in ten is
not what we were searching for. For example, a func-
tion that returns the number of low order zeros rather
than the log or a function that only converts to roman
numerals for numbers up to fifty. However, such solu-
tions are easy to spot and could be eliminated with one
additional test case.

The class examples are a bit more complex. The
first represents a set that counts the instances of its ele-
ments. The second represents an implementation of the
union-find set algorithm. For the final one, the class is
supposed to contain a compact representation of the
difference between its two input strings and then regen-
erate the output string given this representation and the
original input. The test cases for these are given as a
sequence of calls as shown in Table 3.

A summary of our results for these examples is
shown in Table 4. The search engines used in the tests
are arbitrary. The third column gives the run time in
seconds using only one thread to do all the processing.
The fourth column shows the run time using 8 threads
on a 8-core machine and illustrates that significant
speed up can be obtained by parallelizing the search
process. The fifth column indicates the number of files
found by the given search engines. The sixth column
indicates the number of initial solutions that were

found in these files. The seventh column indicates the
total number of solutions considered. This reflects all
the new solutions that were generated by the various
transformations. The eighth column indicates the
number of solutions that had the proper signature and
could be tested. The final column indicates the number
of solutions found. In several cases, the system found
several variations of the same solution, each slightly
different due to different transformations. A summary
of the transformations that were used in the generated
results for these examples is shown in Table 5.

Our experiments show several things. First, we
have found that the system works in the sense that if
one of the source files located based on the keyword
search contains code that can be transformed into the
appropriate form using the existing transformations,
then that code will be found.

This highly qualified statement points out some of
the characteristics of our approach. First, the system is
highly dependent on being able to find the source files
that contain appropriate code. Keywords provide a
starting point, but we still found instances where our
vocabulary and the vocabulary of the original author
differed so that we did not find any appropriate code.
For those cases where we obtained no results, we went
through the first several pages of standard code search

Name Keywords Signature
Simple Tokenizer tokenize quote List<String> tokenize(String)

Quote Tokenizer
command tokenize split argument
quote list

List tokenize(String)

Robots.txt robots.txt boolean check(URL)
Log2 log base int log2(int)
To Roman roman numeral String toRoman(int)
From Roman roman numeral number conversion int convert(String)
Primes prime number boolean checkPrime(int)
Perfect Numbers “perfect number” boolean isPerfect(int)
Day of Week day of the week String dayOfWeek(String date)
Easter Easter date holiday year Date computeEaster(int);

Multimap multiset, multimap

class MultiMap {
Multimap();
void add(Object);
int count(Object);

}

Union-Find union find

class UnionFind {
UnionFind();
void add(Object);
Object find(Object);
void union(Object,Object);

}

Text Delta text delta

class TextDelta {
TextDelta(String newstr,String oldstr);
String apply(String old)

}

TABLE 1. Examples for semantic searching



output and verified that there were no functions there
that even came close to meeting our criteria.

Second, the set of transformations is powerful but
incomplete. The system will become more effective as
we add more transformations. One particular problem
arises with handling generics since about half of the
currently available open-source code assumes Java 5
and uses generics and the other half only assumes Java
1.4 and does not. Additional transformations are rela-
tively easy to encode.

Third, the number of total solutions considered
tends to be within a small multiple of the number of
initial solutions, often within two. This shows that the
conditions on the transformations and the continual
pruning we use are effective. Currently, the most sig-
nificant increases occur during searching for a class
where each of the methods needs to be transformed
individually. We also found that the test cases we have
looked at do an average of six levels of transforma-
tions, with the maximum being one of the class cases
with thirteen.

Name
Test Cases

Input Output
Simple Tokenizer “this is a test” [ “this”, “is”, “a”, “test” ]

Quote Tokenizer
“this is a test” [ “this”, “is”, “a”, “test” ]

“this is a ‘test with’ quoted \”string types\” in it”
[ “this”, “is”, “a”, “test with”, “quoted”,
“string types”, “in”, it” ]

Robots.txt
“http://www.cs.brown.edu/people/spr” true
“http://www.cnn.com/topics” true
“http://www.nytimes.com/college/students” false

Log2

0 RuntimeException
1 0
4 2
32 5

To Roman 13 xiii

From Roman
VIII 8
xxvi 26

Primes
5 true
39 false
59 true

Perfect Numbers
6 true
12 false
28 true

Day of Week “08/07/08” “Thursday”
Easter 2008 new Date(108,2,23)

TABLE 2. Test cases for method examples

MultiMap Union-Find Text Delta
MultiMap rslt = new MultiMap();
rslt.add(“Hello”);
rslt.add(“Tata”);
rslt.add(“Hello”);
rslt.add(“Goodbye”);
rslt.add(“Tata”);
rslt.add(“Tata:);
rslt.count(“Unknown”) == 0
rslt.count(“Hello”) == 2
rslt.count(“Tata”) == 3
rslt.count(“Goodbye”) == 1

UnionFind set = new UnionFind();
set.add(“abc”);
set.add(“def”);
set.add(“ghi”);
set.find(“abc”) == “abc”
set.union(“abc”,”def”);
set.find(“def”) == “abc”

TextDelta t = new
TextDelta(“abcdef”, “abxef”);

t.apply(“abxef”) == “abcdef”

TABLE 3. Test cases for class search examples



The time the system takes varies considerably. A
significant portion of the time is dependent on needing
to run the various test cases rather than statically elimi-
nating unworkable solutions. Examples with very
common signatures generally yield a much larger set of
possible solutions that then have to be eliminated.
Moreover, the testing process is the easiest to parallel-

ize and, especially because it is mainly I/O bound, can
achieve significant speed up. The overhead of using
existing search engines varies from five to twenty
seconds depending on the search engine used and the
number of results that are retrieved. This is especially
true for web-based engines where we need to make a
separate web request not only to get the search results,

Example Engines
1-thread

Time
8-thread

Time
# Source

Files
#Initial

Solutions
#Total

Solutions
# Tests

Run
#Results
Found

Simple Tokenizer Labrador 72.725 28.956 138 3860 4159 35 14

Quote Tokenizer
Koders,
Labrador

22.267 15.854 4 164 213 10 6

Robots.txt
Krugle,
Labrador

82.889 27.267 124 145 883 20 1

Log2 Google 165.414 45.750 100 1464 1771 101 1

To Roman
Koders,
Labrador

107.526 32.664 56 888 1010 48 6

From Roman Google 266.671 107.819 38 2730 3244 140 3

Primes
Google,
Labrador

199.020 50.587 228 4000 5266 119 14

Perfect Numbers Google 34.811 12.421 28 92 113 13 5
Day of Week Labrador 175.939 52.445 89 1628 2143 144 0
Easter Koders 11.888 10.658 6 72 75 1 1

Multimap
Google,
Labrador

235.464 113.499 165 231 2664 31 2

Union-Find Labrador 467.540 168.870 149 416 6248 11 1

Text Delta
Google,
Labrador

96.363 37.749 249 443 1649 3 1

TABLE 4.  Search results summary
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Simple Tokenizer X X X X X
Quote Tokenizer X X X
Robots.txt X X
Log2
To Roman X X X X X X
From Roman X X X X
Primes X X X X
Perfect Numbers X X
Day of Week
Easter X
Multimap X X X X X
Union-Find X X
Text Delta X

TABLE 5. Transformations used to generate results



but also for each resultant file. The overhead in gener-
ating and maintaining solutions as annotated abstract
syntax trees is generally small, but is significant in
those examples that involve large source files. Overall,
we have not worked significantly on performance
issues and expect that we can achieve meaningful
speed ups with the current approach.

Finally, we have noted that while there is a lot of
open source code available, the code that a program-
mer actually wants for an application is probably not
available per se. We only found one instance of the
Easter computation, for example. However, there are
many programs out there that compute the date of
Easter -- they just take their inputs and outputs in sig-
nificantly different forms than what was asked for. For
the Text Delta example, code could be found that com-
puted edit differences, but nothing that took a construc-
tor and built and object that could then be latter used
(the one instance found was the code we wrote when
we failed to find external code to do the task).

The system is currently available on the web at
http://conifer.cs.brown.edu/s6.

8.  Future work
We are working on several ways of extending this

work. These include additional transforms, using
context information, additional semantics, and an
improved user interface.

By looking at different examples and examining
what programmers actually do when converting open
source code into code for their project, we can identify
other transformations that will be helpful and that can
be incorporated into the system. Some of these will
deal with advanced type conversions, for example con-
verting between arrays and collections or handling
generics. Others will deal with removing unwanted
dependencies, especially dependencies that cannot be
resolved. A third set will deal with using classes to rep-
resent methods. A fourth set will deal with different
solution approaches, for example returning a list or
providing an iterator.

One of the drawbacks of our approach is that the
function being searched for has to compile indepen-
dently. Often, when programmers search, they are
looking for code that will fit into an existing package,
using existing classes and interfaces. CodeGenie
addresses this by working inside Eclipse [19]. We will
extend our approach so that the user can specify an
appropriate context in which the new code should work
and then use this context as part of the search process,
using either Eclipse or a web-based interface. Transfor-
mations will be used to have the identified code use
classes and methods from the given context, handling
mappings between user classes and classes in the iden-
tified code as in [36].

Context information also flows the other way. The
files that we find in the keyword search are generally

part of a large package. We should be able to include
dependencies from these additional files in construct-
ing a viable solution.

Our notion of semantic search currently only
handles a limited set of semantics. We want to enrich
this to further improve what the user can specify and
provide additional confidence in the results. Here we
are looking into doing formal JML-based checking for
valid solutions; using the initial JML specifications to
generate test cases [6]; letting the user specify security
conditions along the lines of Java security policies;
letting the user specify threading conditions, specifying
whether the code should be thread-safe and what
should be externally synchronized; and letting the user
specify data flow constraints.

Finally, we are continuing to work on the user
interface, attempting to make it as easy as possible for
the user to specify what they are looking for. Here we
are concentrating on making it easier for the user to
provide more complex test cases; making the interface
more interactive so the user can easily see the effects of
additional test cases or of modifying the keywords;
augmenting search keywords with information from
the test cases; and letting the user save test cases.

These continuing efforts are based on the success
of the approach even in its current form. Our work
demonstrates that semantics-based search is a more
promising approach than traditional keyword based
search. Our experience shows that only a small number
of easily defined test cases are needed to properly iden-
tify appropriate code. Our system demonstrates that a
transformation-based approach is feasible and can
provide results that the programmer can immediately
use. Finally, our approach is practical.
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