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Abstract 

The visualization of conceptual structures is a key component of support tools for complex 

applications in science and engineering. Foremost among the visual representations used are 

drawings of graphs and ordered sets. In this talk, we survey recent advances in the theory and 

practice of graph drawing. Specific topics include bounds and tradeoffs for drawing properties. 

tlrlce-dimensional Icpt-ebentations, methods fur constraint satisfaction, and enptlr imental studieb. 
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1. Introduction 

In this paper, we survey selected research trends in graph drawing, and overview 

some recent results of the author and his collaborators. 

Graph drawing addresses the problem of constructing geometric representations of 

graphs, a key component of support tools for complex applications in science and 

engineering. Graph drawing is a young research field that has grown very rapidly in 

the last decade. One of its distinctive characteristics is to have furthered collaborative 

efforts between computer scientists, mathematicians, and applied researchers. 

The book by Di Battista, et al [23] describes fundamental algorithmic techniques 

graph drawing. A comprehensive bibliography on graph drawing algorithms [22] cites 

more than 300 papers written before 1993. Most papers on graph drawing are cited 

in yeom. bib, the computational geometry BibTEX bibliography available from 

ftp:llcs. ususk. mlpuhlg~ometryl (search for keyword “graph drawing”). Surveys on var- 

ious aspects of graph drawing appear in [25,34,43,46,77,7&E 1,86,89, XX, 87.841. 
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The proceedings of the annual Symposium on Graph Drawing are published by 

Springer,Verlag in the LNCS series [94,5,71,21]. Three special issues of journals 

dedicated to graph drawing have been recently assembled [ 14,28,29]. Additional spe- 

cial issues on selected papers from the Graph Drawing Symposia are in preparation 

[26,65]. 

The author maintains a page (http:llwww. cs. brown. edulpeoplelrtlgd. html) with links 

to graph drawing resources on the Web. 

The rest of this paper is organized as follows: Section 3 overviews lower an upper 

bounds on fundamental drawing properties, such as area, and gives tradeoffs between 

them. Basic graph drawing terminology is reviewed in Section 2. Three-dimensional 

drawings are discussed in Section 4. Section 5 deals with methods for constraint sat- 

isfaction. Finally, experimental studies are reported in Section 6. 

2. Graph drawing glossary 

First, we define some terminology on graphs pertinent to graph drawing: 

n: number of vertices of the (di)graph being considered. 

m: number of edges of the (di)graph being considered. 

d: maximum vertex degree (i.e., number of incident edges) of the (di)graph being 

considered. 

degree-k graph: graph with maximum degree d bk. 
digraph: directed graph, i.e., graph with directed edges (drawn as arrows). 

acyclic digraph: without directed cycles. 

transitive edge: edge (u,v) of a digraph is transitive if there is a directed path from u 

to v not containing edge (u, v). 

reduced digraph: without transitive edges. 

source.. vertex of a digraph without incoming edges. 

sink: vertex of a digraph without outgoing edges. 

st-digraph: acyclic digraph with exactly one source and one sink, joined by an edge 

(also called bipolar digraph). 

connected graph: any two vertices are joined by a path. 

biconnected graph: any two vertices are joined by two vertex-disjoint paths. 

triconnected graph: any two vertices are joined by three vertex-disjoint paths. 

tree: connected graph without cycles. 

rooted tree: directed tree with a distinguished vertex, called the root, such that each 

vertex lies on a directed path to the root. 

binary tree: rooted tree where each vertex has at most two incoming edges. 

layered (di)graph: the vertices are partitioned into sets, called layers. A rooted tree 

can be viewed as a layered digraph where the layers are sets of vertices at the same 

distance from the root. 

k-layered (di)graph: layered (di)graph with k layers. 



FIN. I. Types of drawings: (a) polyline drawing of K3.3; (b) straight-line drawing of K~,J; (c) orthogonal 

drawing of IS;;; Cd) planar upward drawing of an acyclic digraph. 

In a drawing of a graph, vertices are represented by points (or by geometric figures 

such as circles or rectangles) and edges are represented by curves such that any two 

edges intersect at most in a finite number of points. Except for Section 4, which covers 

three-dimensional drawings, we consider drawings in the plane. The following types 

of drawings are defined: 

polylinr druv~iny: each edge is a polygonal chain (Fig. l(a)). 

straight-line drming: each edge is a straight-line segment (Fig. l(b)). 

orthogonal dru,c~ing: each edge is a chain of horizontal and vertical segments (Fig. 1 (c)) 

hmd in a polyline drawing, point where two segments part of the same edge meet 

(Fig. l(a)). 

cr-ossiny: point where two edges intersect (Fig. l(b)). 

grid dru~~~ing: polyline drawing such that vertices, crossings and bends have integer 

coordinates. 

pbnur drm~img; no two edges cross (see Fig. l(d)). 

pluno~ jdi)~~rupph: admits a planar drawing. 

rnrhr&i& (di)gruph: planar (di)graph with a prespecified topological embedding (i.e.. 

set of faces), which must be preserved in the drawing. 

up~u~d riruwing: drawing of a digraph where each edge is monotonically nondecreasing 

in the vertical direction (see Fig. l(d)). 

~lpn~rd piunur di<quph: admits an upward planar drawing. 

Iu~rrrd clraGz~q: drawing of a layered graph such that vertices in the same layer arc 

horizontally aligned (also called hierarchical drawing). 

fticr: a region of the plane bounded by vertices and edges of a planar drawing. 

c’onars drmkg: planar straight-line drawing such that the boundary of each face is a 

convex polygon. 

visihifit~- tlruwiny: drawing of a graph based on a geometric visibility relation. E.g., 

the vertices might be drawn as horizontal segments, and the edges associated with 

vertically visible segments. 

proximity drawing: drawing of a graph based on a geometric proximity relation. E.g., 

a tree is drawn as the Euclidean minimum spanning tree of a set of points. 
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dominance drawing: upward drawing of an acyclic digraph such that there exists a 

directed path from vertex u to vertex v if and only if x(u) <x(u) and v(u) d v(v), 

where x(.) and JJ(.) denote the coordinates of a vertex. 

hv-drawing: upward orthogonal straight-line drawing of a binary tree such that the 

drawings of the subtrees of each node are separated by a horizontal or vertical line. 

Straight-line and orthogonal drawings are special cases of polyline drawings. Poly- 

line drawings provide great flexibility since they can approximate drawings with curved 

edges. However, edges with more than two or three bends may be difficult to “fol- 

low” for the eye. Also, a system that supports editing of polyline drawings is more 

complicated than one limited to straight-line drawings. Hence, depending on the appli- 

cation, polyline or straight-line drawings may be preferred. If vertices are represented 

by points, orthogonal drawings exist only for graphs of maximum vertex degree 4. 

3. Bounds and tradeoffs on drawing properties 

For various classes of graphs and drawing types, many universal/existential upper 

and lower bounds for specific drawing properties have been discovered. Such bounds 

typically exhibit trade-offs between drawing properties. A universal bound applies to 

all the graphs of a given class. An existential bound applies to infinitely many graphs 

of the class. 

Whenever we give bounds on the area or edge length, we assume that the drawing is 

constrained by some resolution rule that prevents it from being arbitrarily scaled down 

(e.g., requiring a grid drawing, or a minimum unit distance between any two vertices). 

3.1. Bounds on the Areu 

Table 1 summarizes selected universal upper bounds and existential lower bounds 

on the area of drawings of graphs. 

In general, the effect of bends on the area requirement is dual. On one hand, bends 

occupy space and hence negatively affect the area. On the other hand, bends may help 

in routing edges without using additional space. 

The following comments apply to Table 1. Linear or almost-linear bounds on the 

area can be achieved for trees. See Table 4 for trade-offs between area and aspect 

ratio in drawings of trees. Planar graphs admit planar drawings with quadratic area. 

However, the area requirement of planar straight-line drawings may be exponential if 

high angular resolution is also desired. Almost linear area can be instead achieved in 

nonplanar drawings of planar graphs, which have applications to VLSI circuits. Upward 

planar drawings provide an interesting trade-off between area and the total number 

of bends. Indeed, unless the digraph is reduced, the area can become exponential if 

a straight-line drawing is required. A quadratic area bound is achieved only at the 

expense of a linear number of bends. 
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Table I 
Universal upper bounds and existential lower bounds on the area of drawings of graphs. We denote with LI 

an arbitrary constant such that Oda i 1. We denote with h and (’ fixed constants such that I < h < c 
Class of graphs Drawing type Area Reference 

Rooted tree Upward planar straight hne grid 

Rooted tree Strictly upward planar straight line 

Degree-O(n”) rootedtree Upward planar polyline gnd 

Binaty tree Upward Planar orthogonal gnd 

Tree Planar straight line grid 

Degree-O( na ) tree Planar polyline grid 

Degree-4 tree Planar orthogonal grid 

Planar graph Planar polyline grid 

Planar graph Planar straight line 

Planar graph Planar straight line grid 

l‘ruxmected planar graph Planar straight line convex grid 

Planar graph Planar orthogonal grid 

Planar degree-4 graph Orthogonal grid 

Upward planar dlgraph Upward planar gnd straight lnx 

Reduced planar sf-dlgraph Upward planar grid stmght line 

Upward planar digraph 

General graph 

dominance 

Upward planar grid polyline 

Polylmr grid 

O( n log II ) 

0(/I log /I) 

0t II ) 
O(n log log n 
O(n log n) 
O(,I) 
an) 

01!?) 

od ) 7 
ocn- ) 
Od) 
O(n log? n) 

<1(<“) 

O(r? ) [.30] 

!)(I? ) 12:. 301 

O((n + %)‘I 

Table 2 

Universal lower bounds and existential upper bounds on the angular resolution of drawings of graphs WC 

denote with c a fixed constant such that c > I 
Class of graphs Drawing type Angular resolution Refcrcnce 

General graph Straight line !I( 1/d2) O(log did*) [371 
Planar graph 

Planar graph 

Straight line 

Planar straight line 

<2(1/d) 

!I( I /cd ) 
0( I/d) 

o(&zq 
[371 

[42. 6X I 

3.2. Bow& on the Anyukur Resolution 

Table 2 summarizes selected universal lower bounds and existential upper bounds 

on the angular resolution of drawings of graphs. 

3.3. B0und.y on the number of Bends 

Table 3 summarizes selected universal upper bounds and existential lower bounds 

on the total and maximum number of bends in orthogonal drawings. Some bounds are 

stated for n 3 5 or > 7 because the maximum number of bends is at least 2 for KJ and 

at least 3 for the skeleton graph of an octahedron, in any planar orthogonal drawing. 

3.4. Tradewf between urea and aspect-ratio 

The ability to construct area-efficient drawings is essential in practical visualization 

applications, where screen space is at a premium. However, achieving small area is 

not enough: e.g., it is easy to see that a drawing with high aspect ratio may not be 

conveniently placed on a workstation screen, even if it has modest area. Hence, it is 

important to keep the aspect ratio small. Ideally, one would like to obtain small area 
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Table 3 

Orthogonal drawings: universal upper bounds and existential lower bounds on the total and maximum number 

of bends 

Class of graphs Drawing type Total no. bends Max no. bends Reference 

Degree-4 grapha Orthogonal >n 62n+2 >2 $2 [3] 
Planar degree-4 grapha Orthogonal planar >2n - 2 <2n+2 >2 <2 [3, 951 

Embedded degree-4 graph Orthogonal planar a2n - 2 Gyni2 23 <3 [36,67,92,95] 
Biconnected embedded degree-4 graph Orthogonal planar >2n - 2 <2n+2 >,3 <3 [36,67,92, 951 

Triconnected embedded degree-4 graph 

Embedded degree-3 graphb 

Orthogonal planar >$(n- 1)+2 <in+4 32 $2 [59] 

Orthogonal planar > in + 1 -sin+1 21 <l [59,66] 

Table 4 

Universal upper bounds that can be simultaneously achieved for the area and aspect-ratio in drawings of 

trees. We denote with a an arbitrary constant such that O<a < 1 

Class of graphs Drawing type Area Aspect-Ratio Reference 

Rooted tree Upward planar straight line 

layered grid 0(n2) O(1) [751 
Rooted tree Upward planar straight line grid O(n log n) O(n 1 log n) [12,821 
Rooted degree-0( 1) tree Upward planar polyline grid O(n) O(n” ) [401 

Binary tree Upward planar orthogonal grid O(n log log n) O(n log log n/ log2 n) [401 
Degree-4 tree Orthogonal grid O(n) O(1) [99,621 
Degree-4 tree Orthogonal grid, leave 

on convex hull O(n log n) O(1) 171 

for any given aspect ratio in a wide range. This would provide graphical user interfaces 

with the flexibility of fitting drawings in arbitrarily shaped windows. 

A variety of trade-offs for the area and aspect-ratio arise even when drawing graphs 

with a simple structure, such as trees. Table 4 summarizes selected universal bounds 

that can be simultaneously achieved on the area and the aspect ratio of various types 

of drawings of trees. 

While upward planar straight line drawings are the most natural way of visualizing 

rooted trees, the existing drawing techniques are unsatisfactory with respect to either the 

area requirement or the aspect ratio. The situation is similar for orthogonal drawings. 

Regarding polyline drawings, linear area can be achieved with a prescribed aspect 

ratio [40]. However, experiments show that this is done at the expense of a somehow 

aesthetically unappealing drawing. 

For non-upward drawings of trees, linear area and optimal aspect ratio are possible 

for planar orthogonal drawings, and a small (logarithmic) amount of extra area is 

needed if the leaves are constrained to be on the convex hull of the drawing (e.g., 

pins on the boundary of a VLSI circuit). However, the non-upward drawing methods 

do not seem to yield aesthetically pleasing drawings, and are suited more for VLSI 

layout than for visualization applications. 

3.5. Trade-of between area and angular resolution 

Table 5 summarizes selected universal bounds that can be simultaneously achieved 

on the area and the angular resolution of drawings of graphs. 
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Table 5 

Universal asymptotic upper bounds for the area and lower bounds for the angular resolution that can bc 

simultaneously achieved in drawings of graphs. We denote wtth h and c fixed constants such that h ‘> I 
and c’ > I 

Class of graphs Drawing type .Area Angular resolution Rcferencc 

Planar graph Straight line O(d’n) (I( l/d?) P71 
Planar graph Straight line O(d’n) <I( I,“d) 1371 
Planar graph Planar straightline grid O(n’ ) !I( l/r?) [ 19. X0] 

Planar graph Planar straight line O(F) Q( I/Jcd) [6X1 
Planar graph Planar polyline grid O(n’) n(ljd) [591 

Universal lower bounds on the angular resolution exist that depend only on the 

degree of the graph. Also, substantially better bounds can be achieved by drawing a 

planar graph with bends or in a non-planar way. 

3.6. Open probkms 

Determine the area requirement of (upward) planar straight-line drawings of trees. 

There is currently an O(log n) gap between the known upper and lower bounds 

(Table 1). 

Determine the area requirement of orthogonal (or, more generally, polyline) non- 

planar drawings of planar graphs. There is currently an O(log n) gap between the 

known upper and lower bounds (Table 1). 

Close the gap between the 12( l/d2) universal lower bound and the O(log d/d’ ) 

existential upper bound on the angular resolution of straight-line drawings of general 

graphs (Table 2). 

Close the gap between the 62( l/cd) universal lower bound and the 0( dw) 

existential upper bound on the angular resolution of planar straight-line drawings of 

planar graphs (Table 2). 

Determine the best-possible aspect ratio and area that can be simultaneously achieved 

for (upward) planar straight-line and orthogonal drawings of trees (Table 4). 

4. Three-dimensional drawings of graphs 

Recent advances in hardware and software technology for computer graphics open the 

possibility of displaying three-dimensional (3D) visualizations on a variety of low-cost 

workstations, and a handful of researchers (and film makers 2 ) have begun to explore 

the possibilities of displaying graphs using this new technology. Previous research 

on 3D graph drawing has focused on the development of visualization systems (see, 

e.g. [76,79]). Much work needs to be done on the theoretical foundations of 3D graph 

drawing. Recent progress has been reported in [8,9,35,45,53,64]. 

* An important plot element in the movie Jurussic Purk involves a 3D virtual-reality traversal of a tree 

representing a Unix file system. 
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Fig. 2. Example of a 3D convex drawing. 

4.1. 30 convex drawings 

A 3D convex drawing of a graph G is a realization of G by the skeleton of a 3D 

convex polytope (see Fig. 2. The well-known Steinitz’s theorem says that a graph ad- 

mits a 3D convex drawing if and only if it is planar and triconnected [83] (see also 

[44]), properties that can be verified in linear time (see, e.g. [50,51]). Interestingly, 

it is a simple exercise to derive from the published proofs of Steinitz’s theorem a 

cubic-time method for constructing 3D convex drawings in the real-RAM model [74]. 

Unfortunately, this approach seems to require at least exponential volume and an ex- 

ponential number of bits to implement. Indeed, Onn and Sturmfels [72] show how to 

construct a 3D convex grid drawing within a cube of side O(PZ’~~~‘). 

Maxwell [70] (see also [ 10, 11, loo]) describes a mapping that transforms a 2D con- 

vex drawings with a certain “equilibrium stress property” into a 3D convex drawing. 

Further results on this transformation are given by Hopcroft and Kahn [52]. Eades 

and Garvan [33] show how to construct 3D convex drawings by combining the above 

transformation with the 2D-drawing method of Tutte [97,98]. They also show that 

their drawings have exponential volume in the worst case. Smith (see [49]) claims a 

polynomial-time algorithm for constructing a 3D convex drawing inscribed in a sphere, 

with vertex coordinates represented by O(n log n)-bit numbers, for an n-vertex graph 

known to be inscribable (which can be tested in linear time, e.g., for planar triangula- 



tions, due to a result of Dillencourt and Smith [32]). Das and Goodrich [17] present a 

linear-time algorithm for constructing a 3D convex drawing of a maximal planar graph 

such that the vertex coordinates are rational numbers that can be represented with a 

polynomial number of bits. 

Chrobak et al. [8] have recently shown how to construct in O(H’.~) time a 3D 

convex drawing with O(n) volume such that the vertex coordinates are represented by 

O(n log tr)-bit rational numbers and any two vertices are at distance at least one. 

5. Constraint satisfaction in graph drawing 

Research in graph drawing has traditionally focused on algorithmic methods, where 

the drawing of the graph is generated according to a prespecified set of aesthetic 

criteria (such as planarity or area minimization) that are embodied in an algorithm. 

Although the algorithmic approach is computationally efficient, it does not naturally 

support constraints, i.e., requirements that the user may want to impose on the drawing 

of a specific graph (e.g., clustering or aligning a given set of vertices). Previous work 

has shown that only a rather limited constraint satisfaction capability can be added to 

existing drawing algorithms (see, e.g.[3 1,901). 

Recently, several attempts have been made at developing languages for the specifica- 

tion of constraints and at devising techniques for graph drawing based on the resolution 

of systems of constraints (see, e.g. [20,57,69]). Eades and Lin [63] attempt at com- 

bining algorithmic and declarative methods in drawings of trees. Brandenburg presents 

a comprehensive approach to graph drawing based on graph grammars [4]. 

5.1. Visuul gruph rlraw+zy 

A visual approach to graph drawing, where the layout of a graph is pictorially speci- 

fied “by example”, is proposed by Cruz et al [ 15, 161. Within this approach, a graph is 

stored in an object-oriented database, and its drawing is defined used recursive visual 

rules of the visual meta-language DOODLE [13]. The following types of drawings 

can be visually expressed in such a way that the system of constraints obtained from 

the application of the visual rules to the input graph can be solved in linear time: 

l level drawings and box inclusion drawings of binary trees; 

l a-drawings of series-parallel digraphs [I]; 

l polyline drawings (271, visibility drawings [91], and tessellation drawings [93] of 

upward planar digraphs (see Fig. 3). 

In the rest of this section, we present visual programs for drawing a planar st- 

digraph, i.e., an embedded planar acyclic digraph with exactly one source and one 

sink, joined by an edge. Such digraphs play an important role in the theory of ordered 

sets since their transitive reductions are the covering digraphs of planar lattices [61]. 

Such visual programs can be easily modified to construct drawings of upward planar 

digraphs, which are known to be subgraphs of planar st-digraphs [60,27]. 
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Fig. 3. Drawings of a planar st-digraph: (a) tessellation drawing; (b) visibility drawing; (c) upward polyline 

drawing. 

We show in Fig. 4 a complete visual program for tessellation representations. We 

assume that the vertices, edges, and faces of the input planar st-digraph G are database 

objects, where for each object o the following attributes describing the embedding are 

stored: left face l@(o), right face right(o), bottom vertex hot(o), and top vertex top(o). 

note that the value of each attribute is another database object. 

Each rule defines the visual representation of a database object of a certain class 

(vertex, edge, and face). For tessellation representations, this is a horizontal segment 

for a vertex, a vertical segment for a face, and a rectangle for an edge. The visual 

notation in the rule for an object o includes: 

geometric figures that give the visual representation of object o, such as circles, 

segments, and rectangles; 

references to the visual representation of other objects given by attributes of o, 

denoted with dashed boxes labeled by the attribute; 

landmarks of the visual representations of o and of other referenced objects, shown 

as small squares with labels (e.g., MS, the “middle South” landmark, denotes the 

middle point of the bottom edge of a rectangle); and 

landmarks of the coordinate system, shown with small circles (e.g., ORIGIN denotes 

point (0,O)); 

explicit constraints between landmarks, shown as arrows joining two landmarks with 

labels defining the constraint imposed on the coordinates of the landmarks (e.g., 

in rule (d), the dashed arrow with label max(l,A)[h,v] is an explicit constraint 
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TessellationDrawing 

f: ‘face 
. . . . . . . . . . . . . . . . . . 
: top(f) 

Tassallationkawing 

245 

I 1 TessellationDrawing I 
e:edge 

Fig. 4. Visual rules for constucting a tessellation drawing of a planar st-digraph: 

special rule for the source vertex; (c) rule for a vertex; (d) rule for an edge. 

‘a) rule for a face; (b) 

. 

specifying minimum horizontal and vertical distance 1 from the “midpoint South” 

MS to the “midpoint East” of the rectangle); 

implicit constraints between landmarks, given by their horizontal or vertical align- 

ment (e.g., in rule (d), the “midpoint East” ME of the rectangle representing edge 

e and the “top endpoint” TE of the referenced visual representation of the right 

face of eright(e) must have the same x-coordinate because they are drawn vertically 

aligned). 

Complete visual programs for visibility representations and upward polyline drawings 

are shown in Fig. 5 and 6, respectively. In these two programs, the visual representation 

of the faces is a single point associated with landmark F. This point is invisible but 

contributes to the definition of the constraints. Also, the visual representation of an 

edge includes a visible portion (vertical segment for a visibility representation and 
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1 VisibilityDrawing 1 

f: face 

VisibilityDrawing 

v: sourceVe&x 

ORIGIN . . . . . . . . . 

. . . . . . 
: . F?* 0,5 [i-l] 
i left(v); ‘+ i m-a* i ; 
. . LE RE . . . . . . . . :nght(v): 

I ;I . . . . . . . . . 

(b) Cc) 

VisibilityDrawing 

e:edge 

(4 

Fig. 5. Visual roles for constucting a visibility representation of a planar sr-digraph: (a) role for a face; (b) 

special rule for the source vertex; (c) rule for a vertex; (d) rule for an edge. 

polygonal chain with three segments for an upward polyline drawing) and an invisible 

portion drawn with a conventional “transparent color” (a rectangle or segment with 

shaded lines in the figures). 

6. Experimental graph drawing 

Many graph drawing algorithms have been implemented and used in practical appli- 

cations. Most papers show sample outputs, and some also provide limited experimental 

results on small test suites (see, e.g. [l&38,39,55,57,58] and the experimental pa- 

pers in the Graph Drawing Symposia). However, in order to evaluate the practical 

performance of a graph drawing algorithm in visualization applications, it is essential 



R. Tumassia I Theorericul Computer Scirnw 217 ( 1999 I 235-254 247 

1 PolyllneDrawing [ 

f: face 

PolylineDrawing 

v: sourceVertex v: vertex 

. . . . . . . . . 

i left(v) 

: right(v)! 
. . . . . . . . . . . . . 

(b) (cl 
Poly1ineDrawin-J 

e:edge 

Cd) 

Fig. 6. Visual rules for constucting an upward polyline drawing of a planar .st-digraph: (a) rule for a face; 

(b) special rule for the source vertex; (c) rule for a vertex; (d) rule for an edge. 

to perform extensive experimentations with input graphs derived from the application 

domain. 

The performance of four planar straight-line drawing algorithms on 10 000 randomly 

generated maximal planar graphs is compared by Jones et al. [54]. 

Himsolt [47] presents a comparative study of twelve graph drawings algorithms based 

on various approaches. The experiments are conducted on 100 sample graphs with the 

graph drawing system GmphEd [48]. Many examples of drawings constructed by the 

algorithms are shown, and various objective and subjective evaluations on the aesthetic 

quality of the drawings produced are given. 

Brandenburg and Rohrer [6] compare five “force-directed” methods for constructing 

straight-line drawings of general undirected graphs. The algorithms are tested on a wide 
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collection of examples and with different settings of the force parameters. The quality 

measures evaluated are crossings, edge length, vertex distribution, and running time. 

They also identify trade-offs between the running time and the aesthetic quality of the 

drawings produced. 

Jiinger and Mutzel [56] investigate crossing minimization strategies for straight-line 

drawings of 24ayer graphs, and compare the performance of eight popular heuristics 

for this problem. 

6.1. Ezcperiments on orthogonal drawings 

In [24] Di Battista et al. present an extensive experimental study comparing four 

general-purpose graph drawing algorithms. The four algorithms, denoted Bend-Stretch, 

Column, Giotto, and Pair, take as input general graphs (with no restrictions whatsoever 

on the connectivity, planarity, etc.) and construct orthogonal grid drawings, which are 

widely used in software and database visualization applications. 

Algorithms Bend-Stretch and Giotto are based on a general approach where the 

drawing is incrementally specified in three phases: The first phase, planarization, de- 

termines the topology of the drawing. The second phase, orthogonalization, computes 

an orthogonal shape for the drawing. The third phase, compaction, produces the final 

drawing. This approach allows homogeneous treatment of a wide range of diagram- 

matic representations, aesthetics and constraints (see, e.g., [58,90,96]) and has been 

successfully used in industrial tools. The main difference between the two algorithms 

is in the orthogonalization phase: Algorithm Giotto uses a network-flow method that 

guarantees the minimum number of bends but has quadratic time complexity [85]. Al- 

gorithm Bend-Stretch adopts the “bend-stretching” heuristic [92] that only guarantees 

a constant number of bends on each edge but runs in linear time. 

Algorithm Column is an extension of the orthogonal drawing algorithm by Biedl and 

Kant [3] to graphs of arbitrary vertex degree. The orthogonal grid drawing is incremen- 

tally constructed by adding the vertices one at a time. Namely, at each step a vertex v 

is added plus the edges connecting v to previously added vertices. Some columns of the 

grid are “reserved” to draw the remaining incident edges of v. Concerning the position 

of v, since one row is used for each vertex, the y-coordinate is immediately given by 

the order of visit of v, and the x-coordinate is the one of the reserved column of the 

incident edge of v that minimizes the number of bends introduced by the new edges. 

Algorithm Pair is an extension of the orthogonal drawing algorithm by Papakostas and 

Tollis [73] to graphs of arbitrary vertex degree. 

Examples of “typical” drawings generated by Bend-Stretch, Column, Giotto, and 

Pair are shown in Fig. 7. 

The test data (available on the Internet) are 11,582 graphs, ranging from 10 to 

100 vertices, generated from a core set of 112 graphs used in “real-life” software 

engineering and database applications. The experiments provide a detailed quantitative 

evaluation of the performance of the four algorithms and show that they exhibit trade- 

offs between “aesthetic” properties (e.g., crossings, bends, edge length) and running 
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Fig. 7. Drawings of the same 63-vertex graph produced by algorithms (a) Bend-Stretch, (b) Giotto, (c) 

Column, and (d) Pair, respectively. 
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Fig. 8. (a) Average area versus number of vertices. (b) Average number of crossings versus number of 

vertices. (c) Average CPU time (seconds) versus number of vertices. 

time. For example, Fig. 8 shows the average area number of crossings, and CPU time. 

The observed practical behavior of the algorithms is consistent with their theoretical 

properties. Namely, Giotto outperforms the other algorithms for most quality measures 

but is considerably slower than Column and Pair. 
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