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2 Sellmann et al.

1. Introduction

Scheduling flying crews of airline companies is a hard combinatorial prob-
lem, given the complexity of the constraints that have to be satisfied and the
huge search space that has to be explored. The problem is often tackled by
breaking it down into the crew pairing and the crew rostering (or assignment)
subproblem. In the crew pairing part, basic activities such as flight legs (flights
without stopover) are grouped into pairings. The latter ones are lines of work
for one or more days starting and ending at a home base. Then, in the crew
assignment phase, these pairings are assigned to crew members.

Although easier than the original problem, both subproblems are still hard
to solve. Generally, Operations Research (OR) and Constraint Programming
(CP) techniques are available to solve both problems, since they have drawn
the interest of both scientific communities for many years until today. Most
industrial software is based on OR techniques. Especially for European air-
lines though, there are very strict rules enforced by legislation, unions, etc.
that define the feasibility of schedules. Thus, because a huge amount of com-
putational effort is put into the generation of infeasible lines of work, common
OR-based generate and test approaches are not efficient enough. We show
how Constraint Programming can be incorporated to overcome typical weak-
nesses of OR approaches. For a recent overview on optimization problems
and solution techniques in the airline industry, we refer to (Rushmeier et al.,
1995; Yu, 1998).

By construction, OR methods view a problem globally, taking into ac-
count all variables and usually more than one or even most constraints at a
time. By calculating upper and lower bounds on the costs, they show a good
ability to identify promising parts of the search space. However, they often
suffer from minor local conflicts, which might prevent a feasible solution
from being found. On the other hand, CP methods can efficiently handle
feasibility problems by resolving local conflicts using algorithms based on
arc consistency and advanced search techniques. Respectively, CP methods
lack the ability to view the variables and constraints of a problem globally.
Therefore, they often have problems when stuck in local optima.

During the last decade, some work was done on the crew rostering prob-
lem. Column generation methods have proved to be quite successful — see
e.g. (Day and Ryan, 1997; Gamache et al., 1998; Ryan, 1992). For solving
the railway crew rostering problem, which is similar, but not identical to the
airline crew rostering problem, Caprara et al. developed both an OR and a
CP based approach — see (Caprara, Focacci et al., 1998; Caprara, Toth et
al., 1998). For the latter one, a lower bound from the OR field was used to
improve on the efficiency.

Within the PARROT ESPRIT Project 24 960, we developed two different
approaches to tackle the Airline Crew Assignment Problem (ACA): a CP
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Integrating Column Generation and Heuristic Tree Search for Crew Assignment via CP 3

based heuristic tree search approach (HTS) (Stamatopoulos et al., 1999), and
one following the CP based Column Generation Framework (CGA) (Junker
et al., 1999; Fahle et al., 2002). We show how these two approaches can be
combined to overcome their inherent limitations. A preliminary version of
this work has appeared in (Sellmann et al., 2000).

The paper is structured as follows: In Section 2, we define the ACA Prob-
lem and give the characteristics of the airline test cases used for the exper-
iments. In Section 3, we discuss two autonomous approaches to solve the
ACA. Detailed ways of how these approaches can be integrated to develop
an efficient hybrid algorithm for tackling the ACA are presented in Section
4. Finally, in Section 5, numerical results show the superiority of the hybrid
algorithm compared to the individual approaches.

2. The Airline Crew Assignment Problem

Given a set of crew members, a set of pairings, a set of rules and a cost
function, a roster is an assignment of a subset of pairings to one specific
crew member. A schedule is a set of rosters such that all rules are obeyed and
every pairing is assigned to exactly one crew member. Rules may concern
a single crew member or multiple crew members. Single crew member rules
regard each individual crew member’s roster, stating for example that no two
temporally overlapping pairings can be assigned to the same crew member.
Multiple crew member rules aim at more than one crew member, stating for
example that two given pairings must be assigned to two crew members out of
which at least one must have a certain level of experience. The cost function
associates a cost with every legal schedule, and its minimization is desired.

In our case, every rule in the rule set only deals with just one single crew
member, and the objective function is linear over the rosters. That means that
only single crew member rules can be modeled and that the cost of the entire
solution to the ACA is defined as the sum of the costs of the selected rosters.
More formally:

2.1. DEFINITION

Let k�m�n � IN and let C :� �1� � � � �m� the set of crew members and T :�
�1� � � � �n� the set of pairings.

1. Let R :�C� 2T . Every r � R is called a roster and R is called the set of
all possible rosters.

2. Let B :� �0�1� and H :� �h1� � � � �hk � hi : R�B �1	 i	 k�. Every h�H
is called a (single crew member) rule and H is called a rule set.
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4 Sellmann et al.

3. A roster r � R is called legal (with respect to a rule set H) iff h�r� �
1 �h � H . L�H� :� �r � R; r is legal� is the set of legal rosters (with
respect to the rule set H).

4. f : R� Q� � is called a cost function.

5. The Crew Assignment Problem (ACA) is to minimize ∑1�i�m f ��ci� ti��,
where �ci� ti� � L�H� �1	 i	 m s.t.

a) �c1� � � � �cm��C

b)
�

1�i�m

ti � T where ti
 t j �� /0� i � j �1	 i� j 	 m

The model as stated above neither allows non-linear objectives when com-
bining rosters, nor permits to restrict the combination of rosters by additional
multiple crew member rules one might be interested in when tackling real
life applications. Nevertheless, both methods we present to solve the above
problem allow to treat linear multiple crew member rules as well.

2.2. THE AIRLINE TEST CASES

We consider test cases stemming from two European airline companies. The
instances of company A consist of 50–65 crew members and 766–959 pair-
ings. Company B has 7–30 crew members and 129–279 pairings. Case A
covers a planning period of one calendar month, while data sets for B cover
two weeks. While case B incorporates mainly 1–2 day pairings, A considers
pairings of duration less than 24 hours.

The objective of company B is to achieve a fair distribution of activ-
ities over all crew members, whereas in A we aim at satisfying as many
preferences expressed by the crew members as possible by minimizing dis-
satisfaction.

Importantly, the rule sets in both cases are distinct. In A, typical rules such
as succession rules and rest time rules, but also more complicated ones like
rules ensuring a minimum of days off within gliding windows of variable
lengths are incorporated. Also, rules guaranteeing minimum and maximum
flight time are enforced. All rules in A are hard constraints, meaning that if
they are violated, the solution is considered infeasible.

In B, we consider flight time rules that limit the time actually flown by the
crew within certain time periods. These rules are also strict.

The main difference between the two test cases regarding the algorithms
we developed is due to the fact that company B does not insist on a partition-
ing of the work, i.e. in that test case restriction 5b is relaxed to

�

1�i�m

ti 
 T .

Obviously, this difference requires that our algorithm is able to incorporate
two different types of master problems.
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Integrating Column Generation and Heuristic Tree Search for Crew Assignment via CP 5

3. Two Approaches to Solve the ACA

In this section, we introduce two approaches for the ACA that we want to
combine later. As our main focus in this paper is on integration, for further
insights we refer to (Fahle et al., 2002; Junker et al., 1999; Stamatopoulos et
al., 1999) describing the algorithms in more detail.

One goal within the PARROT project was the development of generic
tools that are able to treat different rules and regulations that typically arise
in airline companies. Particularly for European airlines, these rules are very
complex and often non-linear. It was therefore decided to model the rules and
regulations as a constraint program. Hence, both approaches and the resulting
integrated approach are based on a CP core.

3.1. CP BASED COLUMN GENERATION APPROACH

The definition of the ACA as stated above allows to apply the column gen-
eration principle, i.e., it can naturally be decomposed into the subproblem of
generating legal rosters and the set partitioning master problem. The latter
one is an integer program (IP) that ensures 5a and 5b of Definition 2.1:

min ∑
i�1�����k

f ��cϕ�i�� ti��xi

s�t� ∑
i�1�����k

and ϕ�i�� j

xi � 1 j � 1� � � � �m (1)

∑
i�1�����k

and s belongs to ti

xi � 1 s � 1� � � � �n (2)

xi � �0�1�

where ϕ : �1� � � � �k�� �1� � � � �m� maps a column number to a crew member.
The m constraints in (1) assign exactly one line of work to each crew member.
The n constraints in (2) ensure that all activities are covered exactly once. In
this model, every (legal) roster corresponds to a 0-1 column.

The subproblem consists of finding rosters respecting all rules and improv-
ing the objective. From linear programming (LP) duality theory, it is known
that columns with negative reduced costs are candidates for such an improve-
ment. Notice that duality theory is only valid for the LP-relaxation of the
original IP. Thus, pure column generation must be viewed as a heuristic only.
To prove optimality of the IP model, column generation has to be extended to
a branch and price approach (Barnhart et al., 1998).

We first generate a bunch of individual lines of work and then try to com-
bine them to partition the entire work. When solving the LP-relaxation of the
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Figure 1. Constructing an optimal and legal roster is equivalent to finding a constrained
shortest path in a weighted DAG.

master problem, we get dual information that allows to search for potentially
improving columns. That is, in the subproblem we try to generate new ros-
ters that have negative reduced costs. Those rosters are added to the master
problem, which is solved again, and so on until no more rosters with negative
reduced costs can be computed or until a certain iteration limit is reached.

Selecting an optimal set of non-overlapping activities respecting the rule
set can be interpreted as the problem of finding a constrained shortest path
in a weighted directed acyclic graph (DAG) G (see Figure 1). There, consis-
tency checking allows to remove arcs and nodes from G that could cause the
construction of illegal or non-improving rosters.

Due to complex and possibly non-linear single crew member rules, gener-
ating legal rosters with negative reduced costs can be very difficult. Moreover,
rule sets vary from airline to airline and have no common structure that could
easily be exploited to design a generic efficient constrained shortest path al-
gorithm that can cope with any rule set. Therefore, we apply a CP search to
generate legal rosters. As we are only searching for individual lines of work
with associated negative reduced costs, we incorporate an optimization con-
straint that performs reduced cost propagation. That is, instead of searching
for constrained shortest paths, we rather introduce a shortest path constraint.

This framework has been formalized by Junker et al. (1999) and is called
CP based column generation approach. It was applied in (Fahle et al., 2002)
and has proven to be generic and yet efficient for the ACA. However, it suffers
from certain drawbacks.

3.1.1. Set Partitioning — Set Covering
The major obstacle for CGA is the set partitioning (SPP) structure of the mas-
ter problem. Finding a feasible solution to the SPP is NP-hard already (Garey
and Johnson, 1979). Moreover, the dual information gained from equation
constraints is more difficult to exploit than that of cover or packing con-
straints. Therefore, we would like to relax the master problem to a set cov-
ering formulation (that remains an NP-hard problem but can be solved much
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Integrating Column Generation and Heuristic Tree Search for Crew Assignment via CP 7

more easily in our case) by only requiring the pairings to be flown by one
or more crew members, i.e., we relax (2) to ∑i xi � 1. Then, however, to
compute a legal schedule, we must decide which crew member finally gets an
overcovered pairing assigned.

3.1.2. Feasible Solutions for Set Partitioning
To obtain a formulation that guarantees that we can always find a feasible
solution, we add two types of dummy columns: The first type of columns
covers exactly crew member i, the second exactly one activity j, for all i �
1� � � � �m and j � 1� � � � �n. That is, we allow empty rosters and unassigned
activities. By setting the costs for choosing a dummy column to an arbitrary
high value, we make sure that they only become part of an optimal solution
if the original master problem was infeasible.

Although this procedure works, to achieve meaningful dual information
of the master problem, the solution should not be spoiled by dummy costs.
Thus, it would be better to generate an initial set of rosters that contains an
entire work partitioning schedule.

3.2. HEURISTIC TREE SEARCH CP APPROACH

The other algorithm developed to tackle the ACA is the heuristic tree search
CP approach. In that HTS, each complete feasible solution of the ACA is
constructed by solving the corresponding constraint satisfaction problem —
see (Stamatopoulos et al., 1999). The problem is modeled by a set of vari-
ables, which correspond to assignable pairings. For each pairing, there is a
variable the domain of which represents the crew members that can possi-
bly be assigned to the pairing.1 For each constrained variable representing
the assignment of a pairing, its initial domain comprises all available crew
members. The posting of the appropriate constraints reduces the domains
of these variables by removing crew members that cannot be allocated to
the corresponding pairings. This is possible, for example, due to preassigned
activities, to regulation violations because of the crew member’s history, etc.
The search tree of the problem is created by iterating over pairings in some
specific way and assigning each pairing to a crew member.

Each level of the tree corresponds to the assignment of a pairing. The
branch followed from a node represents the allocated crew member to the
pairing. Each non-leaf node corresponds to a partial assignment, identified by
the path from the root to the node. Leaf nodes correspond to complete legal
assignments, i.e. (not necessarily optimal) feasible solutions of the problem.
Each allocation of a crew member to a pairing activates the constraint prop-

1 It is assumed that every pairing can only be assigned to one crew member. In case there
are more than one crew members necessary to staff a pairing, copies of the pairing are created,
and each copy can again only be assigned to a single crew member.
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8 Sellmann et al.

agation mechanism. More branches of the tree are pruned, as values which
are inconsistent with the posted constraints are removed from variables’ do-
mains. For example, the assignment of a pairing to a crew member causes
the removal from the domain of the crew member of all other pairings that
overlap with the one just assigned. When a node is proved to be a dead-
end, which means that one or more pairings cannot be assigned to any crew
member, backtracking occurs, and decisions taken before are reconsidered.

The constraints of the problem are the regulations of the airline at hand
that dictate which rosters are acceptable and which are in violation of the
airline rules. A solution to a constraint satisfaction problem is any assignment
of values to variables that respects all constraints. A feasible solution to the
ACA, formulated as a constraint satisfaction problem, is any assignment of
crew members to pairings such that all airline rules and regulations are re-
spected. Then, the objective function is optimized by searching for improving
solutions only.

Regarding the way the search tree is traversed, we developed a variety
of search methods. Essentially, the distinctions between search methods em-
anate from the fact that they set choice points at different nodes.

3.2.1. Tree Traversal
A variety of search methods for traversing the problem tree exists in the liter-
ature. The oldest, most popular and, by far, most widely used search method
is Depth First Search (DFS). The main drawback of DFS is that, even for
problems of moderate size, it only explores a very small portion of the search
tree at the lower left.2 Although we implemented and tested DFS, we found
that it does not perform well for our problem.

Innovation in the field came from the notion of discrepancy. At a given
node, a heuristic function provides an estimate of which branch the search
should follow, as the one that is most likely to contain solutions (or solutions
of good quality in the case of optimization). Always, following the heuristic
advice defines a unique path that is said to contain no discrepancies. Follow-
ing the heuristic advice except for one case defines paths of one discrepancy.
A path contains a discrepancy whenever the heuristic advice is not followed.

Limited Discrepancy Search (LDS) (Harvey and Ginsberg, 1997) is an
iterative search method. In the i-th iteration, it explores all paths with i or
less discrepancies. In the i-th iteration of the original LDS method, paths
with discrepancies higher up the tree are explored before the ones where
the discrepancies occur further to the bottom. The intuitive justification for
that approach is that a heuristic is more likely to be wrong higher up the
tree, where information is limited. We implemented a variant of LDS. Our
variant searches paths with discrepancies lower down the tree before ones

2 It is common practice to regard the branches under a node as ordered according to a
heuristic function. Following the advice of a heuristic means to go “left” down the search tree.
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Integrating Column Generation and Heuristic Tree Search for Crew Assignment via CP 9

with discrepancies higher. Its advantage is that time consuming descends
from near the root towards the leaves are avoided. Also, our variant is not
iterative. It searches those paths having i or less discrepancies and then exits.
Thus, it is not complete. Practically, however, the parameter i can be chosen
so that a big enough portion of the tree is explored. In our experiments, this
portion of the tree was much bigger than a modern computer could explore in
a reasonable amount of time. We call this variant modified Exact Discrepancy
Search (mEDS).

Depth-Bounded Discrepancy Search (DDS) (Walsh, 1997) is also an iter-
ative method. In the i-th iteration, it explores all paths where discrepancies
occur before depth i. In contrast to LDS, a path with many discrepancies high
in the tree is explored before a path with very few discrepancies low in the
tree. This is also justified by the assumption that heuristics tend to fail with a
higher probability on top of the tree.

Large Neighborhood Search (LNS), introduced in (Shaw, 1998), incorpo-
rates local search techniques within the CP framework. The idea is to restrict
the search within a fragment of the problem search space. In this way, mi-
nor local improvements can be made, which would go unnoticed by most
search methods. A reduced search space for a problem with a set of unknown
variables V and a known feasible assignment A can be created as follows:
A large subset V1 of V is selected. All assignments in A for variables in V
are fixed and thus a partial solution is created. Search is performed in the
remaining variables with any of the above search methods. After this search is
finished (either because the search subspace has been exhausted or any other
termination criterion is met), another subspace is selected and the process is
repeated. The advantage of LNS is that local improvements are discovered
easily, and the objective value is improved fast. The disadvantage is that
the search space cannot be viewed globally. Thus, it is likely that important
improvements are missed. A rational strategy when using LNS is to use one
of the search methods above in the beginning to guide the search towards
a promising area of the search space and to use LNS afterwards to resolve
minor local conflicts.

4. Integration

We present two ways of integrating both methods each one motivated by dif-
ferent problem cases. In the first problem case, the construction of a feasible
schedule is difficult due to very strict rules called for by the airline company.

We observe that CGA eventually gets close to solutions of good qual-
ity, but minor inconsistencies delay it disproportionately long. We show that
this can be overcome effectively by letting the CGA approach solve a re-
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10 Sellmann et al.

laxed (that is Set Covering) version of the problem and then handing possibly
overcovered (and thus infeasible) solutions to the HTS approach for fixing.

In the second problem case, the rule set is not that strict. The CGA ap-
proach alone proceeds as expected. However, the initial time spent for driving
dummy columns out of the basis is considerable. In this phase, dual values
are not very meaningful, because penalties dominate the objective. We show
how the HTS method can help attacking the problem.

The issue that arises is that of the general applicability of each hybrid
method and the possibility of them being combined to one single meta-hybrid,
which would be generally applicable. We address these issues in the end of
section 5.

4.1. FIRST WAY OF INTEGRATION: TRANSFORMING A SET COVERING

INTO A SET PARTITIONING SOLUTION

The first method is applied on case A. In this company, no pairing can be
left unassigned. Moreover, there is a relatively large number of pairings with
respect to the number of crew members (for example 959 pairings/65 crews
on a typical monthly problem). These conditions make finding a feasible so-
lution difficult for the CGA approach. On the other hand, the HTS approach
is able to construct feasible solutions by using sophisticated search methods
and heuristics tailored for the specific problem. However, after a short while
no improving solutions can be found.

Algorithm 1 Top level algorithm for the first method
1: AHT S � HTSOPTIMIZE(V , DEFAULTSVAR, DEFAULTSVAL)
2: repeat
3: ACGA � CGAOPTIMIZE

4: �V1�V2�V3�� PARTITION(AHT S� ACGA)
5: for all v �V3 do
6: v� a�ACGA�v�
7: AHT S � HTSOPTIMIZE(V1�V2, REPAIRSVAR(V1 �V2, ACGA, V2),

REPAIRSVAL(V1 �V2, ACGA, V2)))
8: AHT S � LNSOPTIMIZE(V , REPAIRSVAR(V , ACGA, V1�V2�V3),

REPAIRSVAL(V , ACGA, V1�V2�V3), AHT S�
9: until stopping condition

We overcome the problems of both methods by letting the CGA approach
find Set Covering instead of Set Partitioning Solutions. That is, we relax
the pairing partitioning constraints (2) by only requiring that every pairing
is assigned to at least one crew member. The columns generated by the
CGA approach are much more easily combinable to SCP solutions. Then,
the conversion of SCP to SPP solutions is assigned to the HTS approach,
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Integrating Column Generation and Heuristic Tree Search for Crew Assignment via CP 11

which can resolve local conflicts efficiently by using sophisticated propaga-
tion algorithms. An outline of the procedure is shown in Algorithm 1. Here,
V is the set of all variables, AX is a tuple of assignments � v�xv � of values
xv to variables v generated by approach X , a�A �v� is a function which returns
the value of variable v in assignment A , DEFAULTSVAR and DEFAULTSVAL

are the variable and value selection functions normally used by the HTS ap-
proach respectively, REPAIRSVAR and REPAIRSVAL are the corresponding
heuristics used for repairing Set Covering solutions and HTSOPTIMIZE, and
CGAOPTIMIZE are the HTS and CGA optimization functions. PARTITION

is a function which will be explained shortly. LNSOPTIMIZE performs op-
timization using the LNS method. The time span of the entire schedule is
divided into successive time windows. All activities within such a window
form a search subspace.

We now explain this algorithm in greater detail. In the first line, one or
more initial solutions are found by the HTS approach. This initialization step
provides the algorithm with a set of columns, which can be combined to
feasible solutions. Not much time is devoted to this phase. The variable and
value selection heuristics that would normally be used by the HTS approach
are applied here. Any of the methods presented in the previous sections can
be plugged in. However, we found mEDS to perform best in our case. The
columns constituting these solutions are handed to the CGA approach for
optimization in Line 3. The solution produced in this step is correct except
for the fact that some pairings are assigned to more than one crew member,
which is not legal.

The next task is to use the information found in ACGA to construct a feasi-
ble solution. Let V1 be the set of variables which correspond to overcovered
pairings. One optimistic approach would be to assign the values of the assign-
ment ACGA to all the variables in V �V1 and let the HTS approach perform
a search in the space of the variables in V1. This, however, could lead to a
failure, since it is not known that the partial solution obtained is extendible to
a feasible solution.

For some scheduling problems, such as the vehicle routing problem with
time windows (see e.g. Schulze and Fahle, 1999), a partial solution can easily
be extended by removing entries for overcovered rows from all but one of
the corresponding columns. In our case, though, this approach is not generic
enough, as certain rules may cause the resulting rosters to be infeasible. For
example, a minimum flight time rule might be violated if a pairing is removed
from an otherwise feasible roster. We say that such a rule destroys the legal
subroster property of a rule set.

We can distinguish three subsets of variables in V : The set V1 that con-
sists of variables that correspond to overcovered pairings in ACGA, the set
V2 that consists of variables which have different values in ACGA and AHT S,
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12 Sellmann et al.

Algorithm 2 Heuristics for the first method
REPAIRSVAR�S�A �V �

1: v� NIL

2: for all unbound variables v �V do
3: if a�A �v� � Dv then
4: return v
5: return DEFAULTSVAR(S)

REPAIRSVAL�S�A �V�v�

1: if v �V and a�A �v� � Dv then
2: return a�A �v�
3: else
4: return DEFAULTSVAL�S�v�

and the set V3 which corresponds to variables having the same value in both
assignments.

Function PARTITION partitions V in exactly this manner. Assignments of
variables in V3 are known to be extendible to a full solution, since one has
already been found. Thus, because there is no information which suggests
the contrary, they are realized as soon as possible in each iteration. Assign-
ments in set V2 may be considered as almost certain. However, they should
be realized in a manner that allows backtracking. These issues are handled in
Line 7 with respect to the search method and the heuristics used. CGA does
not provide meaningful information for variables in V1, so HTS performs the
search for assignments to these variables using the default heuristics.

The variable and value selection functions are modified as shown in Algo-
rithm 2. There, the variables that will be taken into account are variables in S.
V is a subset of S for which assignments exist in A . For example, when the
variable selection rule is invoked in Line 7 of Algorithm 1, S is V1 �V2, V is
V2 and A is ACGA. In this case, the variable to be assigned next is any variable
in V2 for which its suggested value exists in its domain. In other words, all
possible assignments in ACGA are realized as soon as possible, in accordance
to the intuitive belief that they would most probably lead to an area containing
improving solutions. If this is not possible, then a variable in V1 is selected,
and the default heuristic is used.

Whenever possible, the value selection heuristic assigns the value sug-
gested by CGA to each variable. Two important details are worth noting:
1. The variable selection heuristic is consulted every time a new assignment
has to be made in the HTS search. That is, if a variable v is selected (because
a�ACGA�v� � Dv) and then for any reason the search backtracks beyond that
point (removing a�ACGA�v� from Dv), then another variable might be selected
instead of v. Like this, assignments and not just variables are dynamically
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Integrating Column Generation and Heuristic Tree Search for Crew Assignment via CP 13

ordered throughout the search process in such a way that those decisions
contained in ACGA will always be taken as early as possible.
2. Discrepancy-based search methods are used to express the belief that the
assignments in ACGA are probably good ones. That is, we try to stick to the
decisions made by CGA, and we would like to make only few deviations.
In our implementation, this issue is handled by using a variant of the LDS
search method. In the original LDS proposal, based on the assumption that
heuristic decisions are less accurate high in the search tree, early decisions
are reconsidered first. But in our case, the assignments for variables in V2 are
realized in the beginning, thus the contrary holds. Therefore, we prefer to use
mEDS in this phase, too.

We should also note that the function HTSOPTIMIZE in Line 1 of Algo-
rithm 1 might or might not use LNS. That also holds for Line 8, where LNS
is mentioned explicitly. That choice should be tuned towards the specific case.
LNS as a stand-alone method is not preferred due to the fact that it will soon
get stuck in a local optima. However, for our purposes the most reasonable
choice would be to use LNS after finding only one solution with a global
tree search method. The local optimum will not be a problem, since the main
optimization steps will follow, and much time will be gained. In any case,
the user should use the method that provides a relatively good solution in the
shortest time possible. We show the effect of such a choice in our experimen-
tal results. We also use it in Line 8 to overcome a problem that might arise
when bounding the values of the variables in V3: Variables in V3 belong to
assignments which have the same values in both AHT S and ACGA. And they
are bound to their values as proposed by CGA to explore promising regions
of the search space. However, this might not be true in all cases. Thus, using
LNS on V1 �V2 �V3 instead of only V1 �V2 might help on reviewing some
almost certain decisions that might not be as accurate. Of course, it is still a
matter of choice to use or not to use LNS and if so, to use it on V1�V2�V3 or
only on V1�V2. In our experiments, we used LNS with mEDS as the subtree
search method.

4.2. SECOND WAY OF INTEGRATION: GENERATING COMBINABLE

COLUMNS AND EXPLOITING DUAL VALUES

We propose a second integration strategy, that is applied on company B. In
this case, the convergence of the CGA approach towards an optimal solution
is assisted by HTS first by constructing a set of initial columns that are com-
binable to complete partitioning solutions in a startup phase, and secondly
by constructing columns with negative reduced costs during the main opti-
mization phase. These columns are guaranteed to be extendible to a feasible
solution, since they are extracted from one. A top level sketch of this method
appears in Algorithm 3. C is a set of rosters, A is an assignment, and duals
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14 Sellmann et al.

Algorithm 3 Top level algorithm for the second method
1: C � HTSTREESEARCH�V�DEFAULTSVAR�DIVERSESVAL�
2: repeat
3: A �duals � CGAOPTIMIZE(C )
4: HTSPOSTNRC�duals�
5: C � HTSLNSTREESEARCH�V� MAXDUALVAR�

MAXDUALVAL� A�
6: until stopping condition

are the dual values corresponding to this assignment (obtained by the CGA).
HTSPOSTNRC posts a constraint on the number of rosters with negative
reduced costs.

4.2.1. Startup Heuristic
In the CGA, columns are generated for each crew member sequentially. By
using dual information, columns with negative reduced costs are generated.
Thus, when the problem is non-degenerate, they lead to a decrease in the
continuous relaxation of the master problem. Therefore, to find high quality
rosters, “good” dual values are needed. Especially in the beginning, the infor-
mation contained in the dual values is very poor. This is because usually no
feasible solution is known at this point, and penalties stemming from dummy
columns (that have to be introduced in the master problem to guarantee the
existence of a solution) have a great impact on the dual values. We need to
find a set of rosters that can legally be combined to form a set partitioning
solution to the ACA. However, the column generator of the CGA is hardly
able to produce such a solution, as it computes one roster at a time and is
only indirectly aware of colliding pairings in different rosters.

Algorithm 4 Modified value selection heuristic for the second method
DIVERSESVAL�V�v�A�k�

1: val � NIL

2: repeat
3: val � DEFAULTSVAL�S�v�
4: if the assignment � v�val � appears more than k times in A then
5: remove val from Dv

6: else
7: return val
8: until val �� NIL or Dv is empty

HTS can help here. In an integrated approach, it is used to generate a
bunch of complete feasible solutions in the beginning, thereby providing
one column for each crew member with every schedule found. Thus, a first

��������	������
���� 
�����
��
� ���

� �
��



Integrating Column Generation and Heuristic Tree Search for Crew Assignment via CP 15

set of columns that we know can be feasibly combined to a complete Set
Partitioning Solution provides the CGA with the necessary “grip” to accel-
erate towards promising parts of the search space with respect to the “real”
objective without disturbing penalties.

Line 1 of the Algorithm 3 realizes this idea. HTS searches for an initial
number of solutions without performing optimization. The number of solu-
tions to be found is a parameter that has to be tuned with respect to the time
spent in this phase and the quality of the initial dual values.

Another parameter that has to be taken into concern is the diversity of the
columns generated. It may be desirable to have many diverse rosters at hand
that allow more and more profitable combinations in the master problem.
One rule of thumb used in practice is that no crew-pairing assignment should
appear more than a certain number of times in these columns. This restric-
tion is taken into account by the slightly modified value selection heuristic
DIVERSESVAL, which appears in Algorithm 4. It works exactly as the value
selection heuristic that would normally be used, but it also records the assign-
ments made and limits the number of times a crew member can be assigned
to a pairing.

In Algorithm 4, A is the current set of solutions. Each time a solution
is found by HTS, this solution is stored in A. Before assigning the value
that would normally be selected by DEFAULTSVAL in Line 3, it is checked
whether the assignment appears less than k times in A. Otherwise, the value
is removed from v’s domain. This heuristic, in coordination with Depth-
Bounded Discrepancy Search, see (Walsh, 1997), guarantees that columns
will be adequately different from each other to make the CGA method even
more efficient.

Especially for large data sets, many initial solutions are needed. To speed
up their computation, we try to shrink the search space: First, only one so-
lution is computed. Then, the LNS search procedure is applied to obtain
solutions that satisfy the diversity conditions only in local areas of the search
space. For example, time windows can be used to limit the search space.

4.2.2. Main Optimization Loop
As shown in Line 3 of Algorithm 3, CGA performs an optimization run taking
the columns produced by HTS as input. It returns an assignment A as well
as the corresponding dual values for the crews and pairings. The solution
returned is feasible with respect to all the company’s rules and regulations.
Then, starting from this point, HTS performs a locally limited search for
columns with negative reduced costs.

The constraint posted in Line 4 of the algorithm asserts that a certain num-
ber of the columns corresponding to each solution found will have negative
reduced costs. This number is defined empirically. Finding a schedule that
consists of columns with negative reduced costs only is rather unlikely. On
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16 Sellmann et al.

the other hand, producing only few such columns is a wasted effort. Our ex-
periments showed that schedules consisting of 30% columns with associated
negative reduced costs can be achieved for our test set. But that does not
mean that 70% of the columns produced are garbage! Instead, those columns
guarantee that all newly generated columns can be extended to a feasible
solution. Thus, the additional columns produced are important with respect
to integer feasibility, whereas the columns with negative reduced costs reflect
our search for improving solutions with respect to a linear objective.

Line 5 performs an LNS search with few deviations regarding the solution
provided by CGA. The pairing with the maximum dual is assigned to the
crew with the maximum dual as long as this crew member’s reduced cost is
not guaranteed to be negative already. Again our search method of choice is
mEDS.

5. Numerical Results

To demonstrate the superiority of combined approaches integrating CP and
OR techniques, we applied the hybrid algorithms as presented above to real-
world crew assignment problems (see Section 2.2). Both the CGA and the
HTS are prototype implementations only. Within a research project, it is not
realistic to develop implementations for the ACA that could compete with
the best industrial codes regarding overall speed, because those codes were
produced during hundreds of person-years. Therefore, we just try to circum-
stantiate the gain in efficiency that can be obtained when combining methods
from OR and CP.

We applied each method integrating HTS and CGA on the airline cases
that motivated their development. All algorithms were implemented in C++
on top of Ilog software (Ilog Cplex, 1999; Ilog Solver, 1999). The first in-
tegration strategy was applied on two monthly data sets from company A.
Experiments for this case were performed on a 640 MB, 296 MHz SUN
UltraSPARC-II, with a time limit of 120 000 seconds.3 The efficiency of our
algorithm improves on the production system which company A currently
uses.

Figure 2 is a cost (i.e., dissatisfaction) versus time graph showing the
performance of the hybrid and the pure HTS methods applied on a monthly
data set containing 959 pairings and 65 crew members. The problem is stated
as minimization problem. The curve marked “LNS-HTS” corresponds to a
hasty strategy in which, after one solution is obtained, LNS is used to achieve
some good solutions fast. The “HTS” curve shows a more mature strategy,
where the search finds several good solutions before LNS is applied to locally

3 Curves stopping before this threshold indicate that no better solution was found from the
moment corresponding to the end of the curve until the time limit has been reached.
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Figure 2. Data set with 65 crew members and 959 pairings.

 600000

 700000

 800000

 900000

1000000

1100000

1200000

1300000

1400000

1500000

0 20000 40000 60000 80000 100000 120000

LNS-HTS
HTS

Hybrid

Figure 3. Data set with 50 crew members and 766 pairings.

optimize them. The curve marked “hybrid” shows the performance of the
hybrid approach, which clearly outperforms both. Interestingly, the pure CGA
cannot detect any feasible solution at all. Within 120 000 seconds, it was not
able to remove all dummy columns from the solution, i.e., the original master
problem without dummy columns still is infeasible.

In these specific experiments, for exhibition purposes only, we call the
HTS strategy in Line 1 of Algorithm 1 to show that it would have the best
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18 Sellmann et al.

performance regardless of the startup phase. That is the reason why “LNS-
HTS” outperforms “hybrid” in the beginning. Of course, we repeat that a
reasonable choice for the startup phase of Algorithm 1 would be a strategy
more like “LNS-HTS”. This strategy is used in the experiments of Figure 3,
which shows the performance of the same methods on another company A
monthly data set containing 766 pairings and 50 crew members.

The following set of experiments is carried to investigate the second way
of integration. Experiments for this case were performed on a 128 MB, 143
MHz SUN UltraSPARC, with a time limit of 20 000 or 70 000 seconds de-
pending on the problem size. Figure 4 shows the costs versus time plot for
CGA, HTS and the second, so called, consolidated approach for a data set
with 7 crew members and 129 pairings. Initially, HTS generates a solution
and passes it over to CGA, which performs one optimization iteration. The
resulting schedule is passed back to HTS, which rebuilds it and then locally
searches for solutions containing as many rosters with negative reduced costs
as possible. The POSTNRC constraint guarantees that an adequate number of
such rosters will be returned. These rosters are then passed back to the CGA,
and the process is repeated.

The same approach is used on a bigger problem instance, as shown in
Figure 5. The plots depict the expected behavior of CGA and HTS. CGA
steadily optimizes the objective, but the quality of the initial solution is poor.
Moreover, the time needed to find a first solution grows with the problem
size. On the other hand, HTS finds relatively good solutions quickly by using
heuristic information, but soon gets stuck. The consolidated approach benefits
from both approaches: it finds good solutions quickly because of HTS and
then steadily continues to refine the solutions due to the help of CGA.

It can also be seen that the integrated approach is slower than HTS early
in the experiments. During that time, the hybrid approach is using the HTS
module to create an initial set of columns according to the startup heuristic.
The reason why HTS is slower in the consolidated case is that the goal is not
to find better and better solutions, since the main optimization burden lies on
the CGA side. Instead, HTS rather tries to find diverse rosters, which help
CGA to find better solutions in the following.

The experiments regarding the second way of integration show that it is
always useful to assign the task of finding a set of initial solutions to the HTS
approach. The best number of solutions computed initially depends on the
rule set as well as on the characteristics of the instance. Assigning the main
optimization burden to CGA is the default choice, as it views the problem
globally taking into account all variables and constraints at a time. If minor lo-
cal adjustments can lead to quality improvements, then having HTS perform
LNS searches throughout the process is cost effective. Furthermore, if the
column generation process gets stuck, i.e., if a significant number of columns
with negative reduced costs proves not be combinable to an IP solution, then
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Figure 4. Data set with 7 crew members and 129 pairings.
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Figure 5. Data set with 30 crew members and 279 pairings.

having HTS generate solutions incorporating columns with negative reduced
costs is cost effective, too.
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20 Sellmann et al.

5.1. COMBINING THE METHODS

Numerical results clearly show that each hybrid approach is successful on the
airline case on which it is applied in our experiments. The question that arises
is whether the two hybrids can generally be combined or not.

We believe that orthogonality generally holds: A meta-hybrid could start
off by having the HTS construct a set of solutions out of which diverse and
feasibly combinable columns can be extracted. Then, the CGA approach can
be used to improve on a relaxed version of the problem, which is repaired by
the HTS approach.

We found that whether or not the use of one of the hybrid approaches
we presented can speed up the computation of a good solution is problem
dependent:

� Of course, the first hybrid can only be applied profitably, if the master
problem is hard enough to justify the use of a relaxation that must be
repaired at some point. Regarding airline case B, this precondition is not
fulfilled, which is why we cannot apply hybrid 1 on this case.

� Using initial solutions provided by the HTS approach, in order to speed
up the starting phase of CGA, only pays off when the CGA approach
alone has difficulties in driving dummy columns out of the basis or
spends too much time on this phase of the process. This is not given
in airline case A, which causes that hybrid 2 cannot be used profitably
here.

We conclude that generally the two hybrids can be combined, but the
usefulness of a meta-hybrid is problem dependent. And its tuning heavily
relies on inherent problem properties, which might not be known a priori.

6. Conclusions

For the ACA as an example, we have shown how CP and OR techniques
can help each other to overcome their fundamental weak points. We believe
that the ideas discussed in this paper can be generalized for other problems
as well, especially in connection with (CP based) column generation. We
presented results on large scale real world ACA data, which show clearly
visible improvements in performance of the hybrid approaches compared to
the solitary methods.

While OR methods view a problem globally and show a good ability to
detect promising regions of the search space, CP methods can efficiently
handle feasibility problems and are well suited to resolve local conflicts.
The first way of integration tries to combine these advantages. It uses the
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Integrating Column Generation and Heuristic Tree Search for Crew Assignment via CP 21

CP based Column Generation approach (CGA) to compute cost efficient yet
relaxed solutions to the problem, and then resolves conflicts of overcovered
pairings by applying a heuristic CP tree search (HTS). The synergy effects
are particularly visible if a lot of work has to be grouped in relatively few
partitions. Then, column generation alone often fails to generate combinable
rosters, and the use of HTS as a repairing module helps a lot to increase the
overall performance.

The second way of integration that we introduced concerns the use of dual
values. We showed how column generation approaches can profit from CP via
the computation of diverse combinable initial columns. On the other hand, the
use of dual information in a CP based heuristic tree search has shown to be
very efficient. It allows to laden the optimization burden on the OR part and
away from CP, which then can focus on what it was designed for originally,
namely to solve constraint satisfaction problems.
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