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Dynamic TCP Acknowledgment and
Other Stories about e/(e − 1)1

Anna R. Karlin,2 Claire Kenyon,3 and Dana Randall4

Abstract. We present the first optimal randomized online algorithms for the TCP acknowledgment prob-
lem [3] and the Bahncard problem [5]. These problems are well known to be generalizations of the classical
online ski-rental problem, however, they appeared to be harder. In this paper we demonstrate that a number of
online algorithms which have optimal competitive ratios of e/(e − 1), including these, are fundamentally no
more complex than ski rental. Our results also suggest a clear paradigm for solving ski-rental-like problems.
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1. Introduction. Consider the following online problems:

SKI RENTAL. Suppose you are about to go skiing for the first time in your life. Naturally,
you ask yourself whether to rent skis or to buy them. Renting skis costs, say, $30, whereas
buying skis costs, say, $300. Your goal is minimize your total cost on all future ski trips.
Unfortunately, you do not know how many such trips there will be. You must make the
decision online.

This is perhaps the simplest and most well-understood online problem. There is a
natural deterministic online algorithm that achieves a competitive ratio of 2 [8], and a
randomized online algorithm that achieves a competitive ratio of e/(e − 1) (which is
about 1.58) in the limit as the ratio between the buy cost and the rent cost becomes
large [7].

DYNAMIC TCP ACKNOWLEDGMENT. A stream of packets arrive at a destination. The
TCP protocol requires that these packets be acknowledged. However, the possibility
exists of using a single acknowledgment packet to simultaneously acknowledge multiple
outstanding packets, thereby reducing the overhead of the acknowledgments. On the
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other hand, delaying acknowledgments too much can interfere with the TCP’s congestion
control mechanisms, and thus it is undesirable to allow the latency between a packet’s
arrival time and the time at which the acknowledgment is sent to increase too much.

This motivated Dooly et al. to define the following problem [3], [4]. The input is a
sequence of n arrival times a1, a2, . . . , an . The output is a set of times t1, . . . , tk at which
acknowledgments occur such that

k +
∑

1≤ j≤k

latency( j)

is minimized, where

latency( j) =
∑

i s.t. tj−1<ai ≤tj

(tj − ai ).

(It is required that tk ≥ an and k ≥ 1.) The parameter k is called the acknowledgment cost
and

∑
j latency( j) is called the latency cost of the algorithm on that input. Of course in

practice the acknowledgment times must be chosen online without knowledge of when
future arrivals will occur. See Figure 1 for a pictorial representation.

Dooly et al. showed that the natural algorithm which waits until the latency since the
previous acknowledgment equals the cost of the acknowledgment has a competitive ratio
of 2. Subsequently, Seiden [11], and independently Noga [9], obtained a lower bound of
e/(e − 1) on the competitive ratio of randomized online algorithms for this problem.

The variant of the problem where packet j has weight wj and one wishes to minimize
k + ∑

j wj latency( j) was also studied, but it is easy to see that for our purposes it is
equivalent to the original problem.

THE BAHNCARD PROBLEM. The Bahncard problem models online ticket purchasing on
the German Deutsche Bundesbahn, where one can opt to buy a Bahncard that entitles the
traveler to a 50% discount on all trips within one year of the purchase date. In the more
general setting, the (C, β, T ) Bahncard problem offers a Bahncard for cost C which
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Fig. 1. A pictorial representation of TCP acknowledgment.
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permits the price of tickets to be discounted by β ∈ [0, 1] for time T from the date of
purchase. This extends ski rental in three ways: first, the benefit of purchasing (instead of
renting) comes with a time limit, second, the trip (rental) costs vary, and third, purchasing
merely offers a discount rather than a free ride.

Fleischer [5] introduced this model and provided a deterministic algorithm with com-
petitive ratio 2. He also presented an e/(e − 1 + β) lower bound on the randomized
competitive ratio. For the case that the Bahncard never expires, Fleischer presented a
matching upper bound and conjectured that this is also the bound for finite expiration
periods.

1.1. Our Results. The main contribution of this paper is a new randomized online
algorithm for TCP acknowledgment that achieves the best possible competitive ratio of
e/(e − 1). We extend these ideas to solve the Bahncard problem for finite expiration
periods, thereby settling Fleischer’s conjecture positively by presenting an e/(e−1+β)-
competitive algorithm. We also generalize our solution to get an optimal algorithm for
the case where the discount rate for different trips varies.

Our secondary contribution is to show that, despite the appearance of greater com-
plexity, these problems are just glorified versions of ski rental (in a somewhat interesting
and obscure way). We believe that there may be something fundamental, if simple, going
on here in precisely this sense: online problems with competitive ratios of e/(e − 1),
of which there are many examples, may need to abstract the ski-rental “phenomenon.”
Finally, our results suggest a clear paradigm for solving online problems of this nature.

The rest of the paper is organized as follows. In Sections 2 and 3 we present the
e/(e − 1)-competitive randomized algorithm for TCP acknowledgment and its analysis.
In Section 4 we explain the connection with ski rental. In the following section we present
the solution to the Bahncard problem. The general paradigm for solving problems of this
nature is briefly discussed in Section 6.

1.2. Definitions. We consider randomized online algorithms against oblivious adver-
saries. (See, e.g., [2] for a more detailed discussion of randomized online algorithms.) An
oblivious adversary must choose the entire request sequence without knowledge of the
coin tosses made by the algorithm, but with full knowledge of the randomized algorithms.
One measures the competitiveness of such algorithms as follows. A randomized, online
algorithm A is c-competitive against an oblivious adversary if there exists a constant α

such that for all oblivious adversaries

E(CA(I )) ≤ cCOPT(I ) + α,

where I is the request sequence generated by the adversary, E(CA(I )) is the expected
cost of algorithm A on input I , and COPT(I ) is the optimal cost on input I .

The randomized competitive ratio is then the infimum over c such that there is a
c-competitive algorithm against an oblivious adversary.

2. Randomized Algorithm for TCP Acknowledgment. The most natural approach
to the construction of a TCP acknowledgment problem is to consider algorithms which
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Fig. 2. Algorithm Az .

probabilistically vary the amount of latency they tolerate until an acknowledgment is
performed. Unfortunately, Noga and Seiden have shown that the most natural variants
of such algorithms do not give an e/(e − 1) competitive ratio [10].

Our solution defines a one parameter family of deterministic online algorithms Az ,
where 0 ≤ z ≤ 1, that measures cost that can be directly charged to the optimal offline
algorithm.

Algorithm Az is defined as follows: Let P(t, t ′) be the set of packets that arrive
between time t and time t ′, i.e., the set of i such that t < ai ≤ t ′. Suppose that the i th
acknowledgment occurred at time ti (and assume that t0 = 0). Algorithm Az performs
the next acknowledgment at the first time ti+1 > ti for which there is a time τi+1,
ti ≤ τi+1 ≤ ti+1, such that P(ti , τi+1)(ti+1 − τi+1) = z. Intuitively, this time is chosen so
that, given the fact that the previous acknowledgment occurred at time ti , in hindsight, z
units of latency cost would have been saved by performing an additional acknowledgment
at time τi+1. See Figure 2.

We define a randomized algorithm A that chooses z between 0 and 1 according to the
probability density function p(z) = ez/(e − 1) and then runs Az .

THEOREM 1. Let A be the randomized algorithm that picks z between 0 and 1 accord-
ing to the probability density function p(z) = ez/(e − 1) and runs the deterministic
algorithm Az . The competitive ratio of A is e/(e − 1).

We will find the following pictorial representation of the input and algorithm very
useful in explaining our algorithms and proofs. Figure 1 shows an example of the TCP
acknowledgment problem. The x-axis represents time and on the y-axis we plot the
number of packet arrivals by that time. The sequence of packet arrivals defines a step
function of equation y(t) = |P(0, t)|. The dots on the x-axis indicate times at which
acknowledgments are sent by the algorithm. The algorithm defines a staircase curve g
such that if acknowledgments are sent at times t1, t2, . . . , tk , then for ti ≤ t < ti+1, g(t)
is constant and equal to |P(0, ti )|. It is easy to see that the latency cost of the algorithm
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is exactly the sum of the areas of the shaded regions on the figure, i.e., the area between
the curve of the algorithm and the curve of the packet arrivals.

Figure 2 shows an example of what algorithm Az might look like. (Subsequent figures
will be simplified by drawing the packet arrival sequence as a straight line.)

3. Analysis of the Algorithm. The main difficulty of our proof lies in the analysis of
algorithm Az for general values of z. As a warmup, we start with the (simpler) analysis
of algorithm A1.

3.1. Analysis of Algorithm A1. The following lemma, although not central to the anal-
ysis, will help clarify the picture.

LEMMA 2. Without loss of generality, we can assume that the optimal algorithm sends
an acknowledgment between any pair of successive acknowledgments of algorithm A1.

PROOF. Consider an arbitrary input sequence I , and suppose that A1 acknowledges
at times ti . Consider any sequence S of acknowledgments, and assume that it does not
send any acknowledgment in (ti , ti+1). Enrich this sequence by sending an additional
acknowledgment at time τi+1. The acknowledgment cost increases by 1, and the la-
tency cost decreases by at least 1, so this new sequence is at least as good as S. Hence
there is an optimal sequence which sends at least one acknowledgment in each interval
(ti , ti+1).

With the help of this representation, we are ready to analyze algorithm A1.

LEMMA 3. Algorithm A1 is 2-competitive.

PROOF. Consider an arbitrary input sequence I . From Lemma 2, the cost CA1 of A1

on input I satisfies

CA1 ≤ nOPT + latency(OPT) + latency(A1\OPT),

where nOPT is the number of acknowledgments performed by OPT on input I , and
latency(A1\OPT) is the latency incurred by A1 that is not incurred by OPT . However,
it is easy to see from Figure 3 that latency(A1\OPT) is precisely the area of a set of
rectangles (shaded in the figure), where each rectangle has its left side at the time when
OPT sends an acknowledgment, and its right side at the following time when A1 sends
an acknowledgment. By definition of algorithm A1, all these rectangles have area at most
1. Hence, latency(A1\OPT) ≤ nOPT and we obtain that

CA1 ≤ COPT + nOPT ≤ 2COPT .

3.2. Analysis of Algorithm Az . We now turn to the analysis of algorithm Az . First, we
need to understand how the cost of algorithm Az relates to the cost of OPT on any input.
Let nz(I ) denote the number of acknowledgments of algorithm Az on input I . Looking
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Fig. 3. Proof of Lemma 3.

at Figure 4, we see that the latency cost of Az is bounded by

• the area above the OPT curve, plus
• the area under OPT and over Az (the dark shaded area in Figure 4), minus
• the area, denoted Ez(I ), under Az and over OPT (the lightly shaded area in Figure 4).

The first term is just COPT(I ) − nOPT(I ), the latency cost of OPT . The second term
can be analyzed as in the proof of Lemma 3: it is just a set of nOPT(I ) rectangles, each
of which has area at most z by definition of Az , for a total of at most znOPT(I ). Hence,

CAz (I ) ≤ nz(I ) + COPT − nOPT(I ) + znOPT(I ) − Ez(I ).(1)

LEMMA 4. Let nz denote the number of acknowledgments of algorithm Az and let nOPT

denote the number of acknowledgments of the optimal algorithm on some input I . Then
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Fig. 5. Proof of Lemma 4: setup.

the area Ez above the optimal curve and below the Az curve on input I is at least

Ez ≥
∫ 1

z
nw dw − (1 − z)nOPT .

PROOF. Fix an input I . Let L(n, z) be the minimum, over all acknowledgment se-
quences S with n acknowledgments, of the area above the S curve that is below the Az

curve. We will prove a lower bound on L(nu, z) for all u ≥ z.
We claim that for any u > v ≥ z,

L(nu, z) ≥ (v − z)(nv − nu) + L(nv, z).(2)

The proof is illustrated in Figures 5 and 6. Figure 5 shows three acknowledgment se-
quences for the given input: S, the acknowledgment sequence with nu acknowledgments
that minimizes L(nu, z), and the acknowledgment sequences of Av and Az . The shaded
areas in Figure 5 represent the nv area v rectangles which caused algorithm Av to send an
acknowledgment. At most nu such rectangles intersect the curve S, since this is exactly
the number of times the curve S meets the arrival curve. Therefore, there are at least
nv − nu of these area v rectangles which lie strictly above S; the upper left corners of
these are circled in Figure 5. Let T be the set of times at which these nv − nu rectangles
begin (if there are more than nv − nu of these, then we choose any nv − nu of them to
define the set T ). We define a new acknowledgment sequence S′ = S ∪ T . The resulting
curve is shown on Figure 6.

Since |S| = nu and |T | = nv − nu , the number of acknowledgments in S′ is precisely
nv . The nv − nu rectangles of T are all between S and S′. Each of them has area v, of
which an area of at most z can lie above Az (by definition of Az). Thus the area above S
is at least (v − z)(nv − nu) plus the area above S′. These facts combine to give us (2).

Taking u = v + dv, we obtain from (2)

L(nv+dv, z) ≥ (v − z)(nv − nv+dv) + L(nv, z).
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Fig. 6. Proof of Lemma 4, continued: defining S′.

Rewriting and integrating from z to t , for any z < t ≤ 1, we obtain∫ t

z
dL(nv, z) ≥

∫ t

z
−(v − z) dnv

which implies

L(nt , z) − L(nz, z) ≥
∫ t

z
nv dv − (t − z)nt .

Observing that L(nz, z) = 0, and that nv ≤ nt for v > t , we have

L(nt , z) ≥
∫ 1

z
nv dv − (1 − z)nt .

Taking nt = nOPT and noting that L(nOPT , z) is a lower bound on Ez gives the lemma.

Letting z tend towards zero, the Az curve tends to the curve of packet arrivals, so
that limz→0 Ez is equal to the latency of OPT , and Lemma 4 then yields the following
corollary.

COROLLARY 5. The cost incurred by the optimal offline algorithm on input I , COPT , is
at least

COPT ≥
∫ 1

0
nz dz.

3.3. Analysis of the Randomized Algorithm. We can now prove the main theorem.

THEOREM 6. Let A be the randomized algorithm that picks z between 0 and 1 according
to a probability density function p(z)and runs the resulting algorithm Az . For any input I ,
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the ratio between the expected cost incurred by A on I and the optimal cost on I satisfies

CA(I )

COPT(I )
≤ 1 +

∫ 1
0 (p(z) − P(z))nz dz∫ 1

0 nz dz
,(3)

where P(z) = ∫ z
0 p(x) dx.

PROOF. Let CA denote the expected cost incurred by the algorithm A. Combining the
calculation below with Corollary 5 yields the theorem.

CA ≤ COPT − nOPT +
∫ 1

0
p(z)(nz + znOPT − Ez) dz

(from (1))

≤ COPT − nOPT +
∫ 1

0
p(z)

(
nz + znOPT −

∫ 1

z
nw dw + (1 − z)nOPT

)
dz

(from Lemma 4)

= COPT +
∫ 1

0
p(z)nz dz −

∫ 1

0
nw

∫ w

0
p(z) dz dw

(by changing the order of integration)

= COPT +
∫ 1

0
p(z)nz dz −

∫ 1

0
nw P(w) dw

= COPT +
∫ 1

0
(p(z) − P(z))nz dz.

We obtain Theorem 1 as an immediate corollary:

Proof of Theorem 1. Applying Theorem 6 to the ski-rental distribution p(z) =
ez/(e − 1), we find

CA(I )

COPT(I )
≤ 1 +

∫ 1
0 (p(z) − P(z))nz dz∫ 1

0 nz dz

= 1 +
∫ 1

0 ((ez/(e − 1)) − ((ez − 1)/(e − 1)))nz dz∫ 1
0 nz dz

= e

e − 1
.

4. TCP Acknowledgment and Ski Rental. To explain the sense in which the essence
of the TCP acknowledgment problem is ski rental, we briefly review the basic ski-rental
result.
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4.1. Ski Rental. We focus here on the continuous version of the problem. The input,
unknown to the online algorithm, is a nonnegative real number u, representing the length
of time that the skier will actually end up skiing. We refer to this input as Iu . The skier, or
online algorithm, must decide for what length of time she should rent skis before buying
them, without knowing what u is. The cost of buying skis is 1.

Any deterministic algorithm for this problem is defined by a positive real number
z, representing the time at which the user will buy skis. We refer to this algorithm
(intentionally to draw the analogy) as Az .

The cost incurred by algorithm Az on input Iu is

C(Az, Iu) =
{

u if u ≤ z,

z + 1 if u > z.

The optimal offline cost OPT on input Iu is

OPT(Iu) = min(u, 1).

Therefore,

C(Az, Iu)

OPT(Iu)
=
{

1 if u ≤ z,

(z + 1)/u if u > z.
(4)

We may assume without loss of generality that any online algorithm (deterministic or
randomized) will buy by time 1, since thereafter the optimal offline does not increase, but
the online cost does. Thus, in our discussion, we assume that both u and z are between 0
and 1.

Any randomized online algorithm A for ski rental is therefore a probability distribution
p(z) over algorithms Az where 0 ≤ z ≤ 1. The optimal randomized online algorithm
for ski rental is chosen so as to minimize c, such that for every u, 0 ≤ u ≤ 1,∫ u

0
p(z)(1 + z) dz + u

∫ 1

u
p(z) dz ≤ cu.(5)

A straightforward argument shows that we may assume equality for all u. We can derive
a differential equation for p(z) by differentiating twice with respect to u, the solution of
which is p(z) = ez/(e − 1). Plugging this distribution back into (5) gives a competitive
ratio of e/(e − 1).

4.2. TCP Acknowledgment Basis Inputs. To explain the connection with ski rental,
we describe a one parameter family of inputs Iu , 0 ≤ u ≤ 1, to the TCP problem. For
reasons that will become clear shortly, we call these inputs our basis inputs. We will
show that when restricted to these basis inputs, the behavior of TCP acknowledgment
algorithms is precisely the behavior of ski-rental algorithms.

The input Iu is defined as follows. Let K be a large constant. The input is a sequence
of n groups of message arrivals of the following form: K i+1 messages arrive at time ti+1

where ti+1 = ti + uK−i .
The important property of this arrival sequence is that even though the latency between

message arrivals is u, the total latency at time tn , assuming no acknowledgments up to
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that point, is equivalent to nu. This is because in each interval the accumulation of latency
due to messages other than those that arrived in the most recent burst is negligible.

Consider now the behavior of Az on input Iu . Since Az acknowledges after seeing a
rectangle of size z, we have that the cost incurred by Az on input Iu is

C(Az, Iu) =
{

nu + 1 if u ≤ z,

n(z + 1) if u > z.

It is also easy to see that the optimal offline cost OPT on input Iu is

OPT(Iu) = nu + 1.

Therefore, in the limit, we have

C(Az, Iu)

OPT(Iu)
=
{

1, u ≤ z,

(z + 1)/u, u > z,
(6)

which by no coincidence is precisely the same as the corresponding ski-rental bounds.
From this we can conclude that, were our inputs restricted to the set Iu , we could easily
use ski-rental results to construct a randomized TCP acknowledgment protocol that
achieves the e/(e − 1) competitive ratio.

4.3. The Final Piece of the Puzzle. The question then becomes: why do the basis
inputs capture the essence of the TCP acknowledgment problem? To understand this, we
return to inequality (3) derived in Theorem 6 for the competitive ratio of the randomized
algorithm A that uses probability distribution p(z) over algorithms Az . Returning to the
basis inputs Iu , we observe that

nz(Iu) =
{

n, z ≤ u,

1, z > u.
(7)

Therefore on the input Iu , (3) becomes

CA(Iu)

COPT(Iu)
≤ 1 + n(

∫ u
0 p(z) dz − ∫ u

0 P(z) dz)

nu
+
∫ 1

u p(z) dz − ∫ 1
u P(z) dz

nu
.

In the limit the third term vanishes and this yields

CA(Iu)

COPT(Iu)
≤ 1 +

∫ u
0 p(z) dz − uP(u) + ∫ u

0 zp(z) dz

u
,

by integration by parts, which is precisely the same equation we get for ski rental (ob-
tained from (5)).

Finally, we recall that for any input I , nz(I ) is a nonincreasing function of z, defined
over the range 0 ≤ z ≤ 1. Thus, from (7) we see that we can represent nz(I ) as a linear
combination of our basis functions

nz(I ) =
∫ 1

0
αunz(Iu).
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(In fact, this is a finite sum, since nz(I ) only changes a finite number of times in the
interval 0 to 1, as there are only a finite number of message arrivals.)

Thus, we have that for any input I ,

CA(I )

COPT(I )
≤ 1 +

∫ 1
0 αu(

∫ u
0 p(z) dz − uP(u) + ∫ u

0 zp(z) dz) du∫ 1
0 αuu du

≤ 1 + max
u

(∫ u
0 p(z) dz − uP(z) + ∫ u

0 zp(z) dz

u

)

= e

e − 1
,

where the final equality is achieved, as in the ski-rental problem, with p(z) = ez/(e − 1).

5. The Bahncard Problem. We now outline how the machinery set forth in Sections 3
and 4 easily translates into an optimal online algorithm for the Bahncard problem with a
competitive ratio of e/(e−1+β). In particular, we show that embedded in the Bahncard
problem is another rendition of ski rental.

Following [5], we define the Bahncard problem input parameters (C, β, T ), where
C is the cost of a Bahncard, and 0 ≤ β ≤ 1 is the discount awarded with a Bahncard
on all trips within time T from the time of purchase (i.e., a discounted trip costs β

times its full cost). Fleischer provides a randomized algorithm which is e/(e − 1 + β)-
competitive when T → ∞. When β = 0 and the trip costs are the same, the Bahncard
problem is of course precisely ski rental. Here we present an algorithm which achieves
the same competitive ratio for finite T and varying trip cost. The solution we present also
generalizes to give an optimal algorithm in the case where there is a different discount
βi associated with each trip. For simplicity, we renormalize by setting C = 1 whereby
each Bahncard expires after one time unit, say one year.

5.1. A Randomized Algorithm for the Bahncard Problem. The key to our analysis is
defining another appropriate one parameter family of online algorithms Bz . The algorithm
Bz buys a Bahncard at the first point when there would have been a cost of z saved had
a Bahncard been purchased at some time earlier in the year. The break-even point for
purchasing a Bahncard is cCRIT = 1/(1 − β). We can assume without loss of generality
that the optimal algorithm will have bought a card during any interval where the savings
exceeds cCRIT, and our randomized algorithm will be a linear combination of algorithms
Bz with 0 ≤ z ≤ cCRIT.

The histogram depicted in Figure 7 will be useful. We indicate a trip of cost y at time
x by a vertical bar of height y at point x . The sum of the heights of these bars is the
total cost if no Bahncard is ever purchased. Below the histogram are masks, representing
three possible algorithms, where the horizontal bars indicate the periods during which a
purchased Bahncard was valid. The total trip cost incurred by each algorithm is the sum
of the bars in the histogram that do not coincide with a bar in the mask. To demonstrate
this, the trip cost for algorithm Bz is highlighted in bold.
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Fig. 7. The Bahncard problem.

Following Lemma 4 and Corollary 5, we find:

LEMMA 7. Let bz denote the number of Bahncards purchased by algorithm Bz and
let bOPT denote the number of Bahncards purchased by the optimal algorithm on some
input I . Then:

1. The trip cost Ez incurred by the optimal algorithm that is not incurred by the Bz

algorithm is at least

Ez ≥
∫ cCRIT

z
bw dw − (cCRIT − z)bOPT .

2. The cost incurred by the optimal offline algorithm on this input, COPT(I ), is at least

COPT(I ) ≥
∫ cCRIT

0
bz dz.

PROOF. The proof of this lemma follows the same format as Lemma 4. For any fixed
input I , let L(bu, z) be the minimum, over all Bahncard purchase sequences S with bu

Bahncards, of trips which cost full price according to S but which are discounted with
Bz . We find that for z ≤ v < u,

L(bu, z) ≥ (v − z)(bv − bu) + L(bv, z).(8)

To see this, first observe that each of the bv Bahncard purchases, algorithm Av was caused
by a recent accumulated trip cost of v. At least bv −bu of these are periods in which both
Av and S are paying full fare. Let T be the times which are exactly one time unit before
Bv buys these bv − bu Bahncards, and let S′ = S ∪ T be a new purchasing schedule
which purchases bv Bahncards. (See Figure 7.) This definition of S′ might require a
new Bahncard to be purchased before an old one has expired, but this will not affect
subsequent arguments. These facts give (8).
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Following Lemma 4 we find that that for any z < t ≤ 1,

L(bt , z) ≥
∫ cCRIT

z
bv dv − (cCRIT − z)bt .

Taking bt = bOPT establishes the first part of the theorem.
Now, let T be the total cost of trips without purchasing any Bahncards. Letting z tend

towards zero, we find

COPT(I ) ≥ nOPT + βT + (1 − β)Ez .

Noting that Ez < T as z tends towards zero establishes the second part of the
theorem.

This lemma can be used to prove the following theorem, which is an analogue of
Theorem 6.

THEOREM 8. Let B be the randomized algorithm that picks z between 0 and cCRIT

according to the probability density function p(z) and runs the resulting algorithm Bz .
For any input I , the ratio between the expected cost incurred by B on I and the OPT
cost on I satisfies

CB(I )

COPT(I )
≤ 1 + (1 − β)(

∫ cCRIT

0 (p(z) − P(z))bz dz)∫ cCRIT

0 bz dz
.

PROOF. Let CB denote the expected cost incurred by the algorithm B. We find

CB ≤ COPT − bOPT +
∫ cCRIT

0
p(z)bz + (1 − β)

∫ cCRIT

0
p(z)(zbOPT − Ez) dz

≤ COPT − bOPT +
∫ cCRIT

0
p(z)

(
bz + (1 − β)zbOPT − (1 − β)

∫ cCRIT

z
bw dw

+ (1 − z)bOPT

)
dz

= COPT +
∫ cCRIT

0
p(z)bz dz − (1 − β)

∫ cCRIT

0
bw

∫ w

0
p(z) dz dw

= COPT +
∫ cCRIT

0
(p(z) − (1 − β)P(z))bz dz.

As an immediate corollary, we obtain the following theorem, matching the lower bound
proved by Fleischer.

THEOREM 9. Let B be the randomized algorithm that picks z between 0 and cCRIT

according to the probability density function p(z) = (1 − β)ez(1−β)/(e − 1 + β) and
runs the resulting algorithm Bz . The competitive ratio of B is e/(e − 1 + β).

PROOF. Plugging p(z) = (1 − β)ez(1−β)/(e − 1 + β) into Theorem 8 yields the
result.
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5.2. Basis Inputs for Bahncard. The notion of basis inputs also generalizes from the
TCP acknowledgment problem and provides a more explicit connection between the
Bahncard problem and ski rental. For simplicity we consider the case when β = 0.

The key, again, is to define a one parameter family of inputs Iu , 0 ≤ u ≤ 1, to the
Bahncard problem. In the simplified Bahncard problem where we take β = 0, the only
difference from ski rental is the finite expiration of the card. For our basis inputs all trips
will occur within a single unit of time. Hence they precisely model ski-rental inputs.

Let m be a large constant. We define the input Iu to be a sequence of m trips, all
costing u/m, all of which occur within one unit of time. Algorithm Bz will purchase a
Bahncard after spending amount z if u ≥ z and will never purchase if u < z. Taking the
limit as m tends to infinity we have that the cost incurred by Bz on input Iu is equiva-
lent to

C(Bz, Iu) =
{

u if u ≤ z,

z + 1 if u > z.

As in ski rental, the optimal offline algorithm will never buy a Bahncard and will incur
a cost of OPT(Iu) = u, giving the same competitive ratio as ski rental given in (4).

For these very simple inputs Iu we find that the number of Bahncard purchases is

bz(Iu) =
{

n, z ≤ u,

0, z > u.
(9)

Thus, Theorem 8 with β = 0 gives

CB(Iu)

COPT(Iu)
≤ 1 + (

∫ u
0 p(z) dz − ∫ u

0 P(z) dz)

u
.

Again, recalling that bz(I ) is always a nonincreasing function of z and writing the input
I as a linear combination of basis inputs, we can conclude that the competitive ratio is
always at most e/(e − 1).

6. Final Remarks. The solutions to ski rental, TCP acknowledgment, the Bahncard
problem and scheduling to minimize weighted completion time all fall within a common
framework. There is a one-parameter family of algorithms, each defined (though not
always explicitly) in terms of savings the optimal offline algorithm would have incurred
had it “acted” earlier. This seems to be a principled approach to solving such problems,
and inherently leads to the ski-rental equation (5) whose solution yields a competitive
ratio of e/(e − 1).
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