
Learning To Fuse Disparate Sentences

By

Deepak Santhanam

Thesis

Submitted in partial fulfillment of the requirements for the

Degree of Master of Science in the Department of Computer

Science at

Brown University

PROVIDENCE, RHODE ISLAND

DECEMBER 2010

This thesis by Deepak Santhanam is accepted in its present form

by the Department of Computer Science as satisfying the

thesis requirements for the degree of Master of Science

Date

Dr. Eugene Charniak, (Advisor)

Date

Dean of the Graduate School

ii

c© Copyright by Brown University, 2011.

All Rights Reserved

Abstract

The work presented here is based on a paper under submission with Micha Elsner.

This thesis presents a system for fusing sentences which are drawn from the same

souce document but differ significantly in content. The system described here is

supervised, trained from real world examples of sentences fused by professional jour-

nalists in the process of editing news articles. The system is similar to previous work

in that, it merges dependency graphs using Integer Linear Programming. Instead

of aligning the inputs as a preprocess, it integrates the task of finding an alignment

along with the selecting a merged sentence into a single joint optimization problem

for which the parameters are learned using a structured online learning algorithm.

Human evaluation shows that the technique produces fused sentences which are both

informative and highly readable.

iv

Acknowledgements

I wish to thank Eugene Charniak for being a great advisor and teacher. Working

with him has been a wonderful experience. I must thank Micha Elsner, who has been

a great friend and mentor. This thesis is based on work I did with him in which he

contributed significantly and also helped me out whenever I got stuck. For the past

year and half, Eugene, him and everyone else in BLLIP have patiently put up with

me and my questions and were always there to help me out whenever i needed them.

I wish to thank Michael Black for his amazing vision courses and also for giving me

an opportunity to work with him for a semester. I also thank Erik Sudderth for his

awesome machine learning courses both of which I thoroughly enjoyed.

I thank all my friends in the department, tstaff and astaff for making my life easier

during my time here.

Finally, I thank my parents and grandparents for their unconditional love and funding.

v

Contents

Abstract . iv

Acknowledgements . v

1 Introduction 1

1.1 Sentence Fusion . 1

1.2 Previous work . 3

1.3 A Supervised Joint Approach . 3

2 Fusing Disparate Sentences 5

2.1 Training Data . 5

2.2 Preprocessing And Retained Information 6

2.3 Fusion Through Joint Optimization 8

2.4 Online Learning Of Parameters . 11

2.5 Tree Linearization . 15

3 Results And Conclusion 17

3.1 Evaluation . 17

3.2 Discussion . 18

3.3 Conclusion . 23

vi

Chapter 1

Introduction

1.1 Sentence Fusion

Text summarization is a useful technique and a popular research topic in computa-

tional linguistics. Most summarization systems (single and multi document) today

use extractive methods for creating their summaries. In the single document case,

they just extract whole sentences from the source document and produce an ordered

set of these sentences as a summary. In the multidocument case, the summary is con-

structed by extracting sentences spanning across multiple documents and ordering

them. It could be the case that sentences extracted from different documents might

have content overlap and the summaries produced by these systems may contain a

significant amount of textual redundancy[7] which needs to be reduced.

Sentence fusion [1, 7] is a text-to-text generation scheme where two or more sen-

tences are ”fused” to form one sentence which contains combined information from the

input sentences. This technique is usually studied in the context of multi-document

summarization as fusing sentences which convey similar information may reduce tex-

tual redundancy in summaries. Traditional fusion systems have looked at the case

1

where the sentences to be fused express the same content while exhibiting different

sentence structure and words. In this work, we explore the case where the input

sentences do not share most of their content, but are related to the extent that fusing

them together will be sensible. Usually, such sentences are linked by a common topic

or refer to a shared entity and will not be a paraphrase of each other as humans do

not restrict themselves to fuse sentences which share most of their content.

Jing and McKeown[12] state that in their investigation of summaries, 36% of the

sentences contain content from multiple sentences present in the original document.

It can be postulated that a document does not contain a lot of redundant sentences

and it is reasonable to suggest that these sentences were formed by fusing disparate

content. This technique could prove to be very useful for abstractive summarization

where instead of taking whole sentences and re-ordering them, summaries are pro-

duced by combining information across multiple source sentences.

The utility of sentence fusion might not be limited to just abstractive summa-

rization. An interesting application would be in machine translation where suitable

sentences in the source document could be fused and then translated to the target

language to produce a summarized translation which could possibly be better than

translating sentence by sentence. Also, the way in which we extracted our dataset

presents another application. Professional human editors perform sentence fusion

as part of the document editing task. This technique could be used as part of an

automatic document editing system.

2

1.2 Previous work

The pioneering work on fusion is by Barzilay and McKeown [1] who introduced the

basic framework on which subsequent work was done. They used sentence fusion for

multidocument summarization where sentences with redundant content were chosen

to be fused. The input sentences were represented using dependency trees and then

word alignments were found. Then they merge some aligned words to form a fusion

lattice and finally, extract a single connected dependency tree as the output sentence.

Filippova and Strube[7] used Integer Linear Programming to extract a depen-

dency tree for the output sentence. Prior work[1, 14] had used language modeling

for extracting the output tree. But this work used Integer Linear Programming and

their ILP had options to impose gramaticality constraints in terms of dependency

relationships [2] and it also attached weights for each dependency arc which repre-

sented syntactic importance scores learned from a parsed corpus. The score on the

arcs predict whether a dependent is a required argument or an optional one. They

finally use a complex linearizer to form the actual output sentence. Their work was

done for German.

1.3 A Supervised Joint Approach

Our system has the same basic framework as previous ones i.e. it performs alignment

and extraction. Unlike previous work, we merge these two steps into one single joint

optimization step. The rationale behind this approach is that it will make the sys-

tem robust to uncertainity about any hidden corresspondences between the sentences.

Also, our system is capable of fusing disparate sentences which as mentioned before

will not be paraphrases of each other and this type of input might pose difficulties

3

to existing sentence fusion systems. We use structured online learning to learn the

parameters for the joint global optimization task allowing it to learn good ways to

combine input sentences from our training corpus.

Input sentences with disparate content present a challenge to existing systems

as all these models use deterministic node alignment using heuristics and merge the

input dependency graphs. [7] align all content words with the same lemma and

parts of speech. [1, 14] use syntactic methods based on tree similarity. Lexical

methods might over align in case of disparate sentences as there are many points of

correspondence between disparate sentences and only some of these correspondences

should actually be merged. Syntactic methods are unlikely to find alignments since

the input sentences are not paraphrases and form different trees. Since our model

selects the set of nodes to merge during the joint optimization step, it can choose

correspondences which lead to a more sensible global solution.

4

Chapter 2

Fusing Disparate Sentences

2.1 Training Data

Our training data comes from a corpus of edited and un-edited news articles where

the editor either fused certain sentences during the edit-process or spliced a fused

sentence. A typical training example would be,

(1) The bodies showed signs of torture.

(2) They were left on the side of a highway in Chilpancingo, about an hour

north of the tourist resort of Acapulco in the southern state of Guerrero, state

police said.

(3) The bodies of the men, which showed signs of torture, were left on the

side of a highway in Chilpancingo, which is about an hour north of the

tourist resort of Acapulco, state police told Reuters.

There are 516 articles from Thompson-Reuters newswire, collected over a period

5

of three months in 2008. Using a greedy method based on bi-gram counts, we find

overlappings in the original and edited versions of the articles and form our dataset.

Due to the scarcity of merged sentences, we also take sentences which were spliced, i.e.

large sentences split into smaller ones during the edit process as training examples.

However in this case, we take the edited sentences and try to produce the original

fused sentence.

There were 9007 sentences in the corpus out of which, 175 splits and 132 merges

were found. We randomly selected 100 from these and marked them as test data

and kept the remainder as training. Due to faulty sentence segmentations, we later

found that 26 of these examples were bad and we manualy removed them. The final

test set had 92 examples and training set had 189 examples which we also used for

development.

2.2 Preprocessing And Retained Information

We use a labeled dependency format for our system’s input. First, the sentences

are segmented using MXTerminator [20] and parsed using the self trained Charniak

parser[15]. Then, using a heuristic procedure, we convert it into a dependency format

and after that, produce a simplified labeled graph. An example of such a graph is

shown in Fig 2.1.

We augment this dependency tree by adding a potential dependency labeled “rel-

ative clause ” between every subject and verb as this allows our system to transform

main clauses like “the bodies showed signs of torture” into noun phrases like “the

bodies which showed signs of torture” as this was a common paraphrasing strategy

6

bodies showed

signs torture

said

left

were

they

side highway chilpancingo

policestate

north hour resort acapulco

root

root

rel

sbj

obj
pp of

rel

sbj

pp by

pp of pp in

pp about
pp of pp of

thean

aux

obj

sbj

rel

merge?

Figure 2.1: The labeled dependency graphs for the example sentences.
Dashed lines show a correspondence arc and potential relative clauses be-
tween subjects and verb phrases.

in the dataset. Correspondences between the two sentences are added by marking

nodes which the system might wish to merge during the joint optimization step. Cor-

respondence arcs are introduced between all pairs of words with the same parts of

speech who get a wordNet based similarity measure [19, 18] greater than 3.0. Pro-

noun co-reference is annotated by hand and we create a correspondence between each

pronoun and all the heads of all coreferent noun phrases.

Fusion is a two-step process involving content selection and merging. Daume III

and Marcu [5] point out that the choice of information selected to be retained is un-

predictable using only sentence level information and Krahmer[13] says that it is easy

if some form of discourse context is present, for example, a question to be answered.

This work primarily focusses on the problem of sentence-level generation as op-

posed to information selection and as a consequence, we provide our system with the

true selection information, i.e. what the editor actually selected to merge. We do this

by aligning the input sentences with the output by repeatedly finding the Longest

common substring untill a substring containing matching content words can no longer

be found. It is to be noted that LCS can handle reordering unlike edit distance. The

7

boundaries of the retained regions are also provided as a input to our system. In

the first example, the boldface parts indicate the content which was selected to be

retained.

2.3 Fusion Through Joint Optimization

Following [7], we model the fusion task as a constrained optimization problem which

we attempt to solve using ILP. For each dependency from word w to head h in the

input sentences, we have a binary variable xh,w, which is 1 if the dependency is re-

tained in the output and 0 otherwise. We are unaware of the points of correspondence

between the input sentences and know of only a set of possible points. Hence, we also

introduce 0-1 integer variables ms,t for each correspondence arc, indicating whether

word s in one sentence should be merged with word t in another and if merged,

whether they form a link between the two sentences, and finally determine if only one

of the pair appears in the output.

Each dependency x, each word w, and each merger m have an associated weight

value v, which is assigned based on its features and the learned parameters of our

system (explained in the next section). Our objective function which sums these

weight values for the structures we retain is given by

max
∑

h,w

vh,w · vw · xh,w +
∑
s,t

vs,t ·ms,t − (1)

Structural constrains are used to make the output form a single connected tree. The

following constraint ensures that every word should have at most one parent

∀w ∈ W,
∑

h

xh,w ≤ 1 − (2)

8

The next constraint is to allow a word to be merged with at most one other word.

∀s, t ∈ M, ms,t +
∑

h

xh,s +
∑

h

xh,t ≤ 2 − (3)

The following two constrains make sure that each merged node has one single parent.

∀s, t ∈ M, ms,t ≤
∑

h

xh,s +
∑

h

xh,t − (4)

∀s, t ∈ M, ms,t +
∑

h

xh,s +
∑

h

xh,t ≤ 2 − (5)

The following constraint forces the output to be connected by ensuring that if a node

has children, it either has a parent or is merged.

∀w ∈ W,
∑
c

xc,w − |W|
∑

h

xh,w − |W|
∑
u

mu,w ≤ 0 − (6)

When merging the nodes, it is possible that certain choices of the merges might

lead to a cycle being formed. To avoid this, a rank variable rw ∈ R for each word

and make it have a higher rank than the word’s parent. We do not do this for the root.

∀w,h ∈ X, |X|xh,w + rh − rw ≤ |X| − 1 − (7)

The next constraint is to make merged nodes have equal ranks

∀s,t ∈ M, |X|ms,t + rs − rt ≤ |X| − (8)

It is necessary that required arguments are present for each word we select to be

9

in the final sentence. This could be made possible by imposing syntactic constraints

and rules are placed to prevent the system to not prune away determiners, auxiliary

verbs, objects, subjects, verbal particles and the word “not” unless their head word is

also pruned or a suitable replacement argument of the same type can be found by the

solver. Following [7], we learn probabilities for prepositional arguments and subclass

arguments. We estimate how often a particular argument appears with a particular

word in a large corpus. While [7]use this in their objective function, we estimate the

probabilities and then threshold and supply constraints to make sure all argument

types with a probability greater than 10% appear if the corresponding head word is

chosen.

It is difficult to come up with constraints for required arguments as word merging

makes it very complex. A word s might be merged with another word t attached to

the right type of argument. An example of this would be if two verbs are merged,

only one of them should be attached to a subject. This is modeled by the express-

sion, ms,t · xt,a where a is a argument word of the appropriate type. This expression

is non-linear and cannot appear directly in a constraint, but we can introduce an

auxiliary variable gs,t,A which summarizes it for a set of potential arguments A, while

retaining a polynomial-sized program:

∀s,t ∈ M,
∑
a∈A

xa,s +
∑
a∈A

xa,t + |W|ms,t−|W+1|gs,t,A ≥ 0 − (9)

The final constraint requires a word s to be connected to an argument in the set A

either directly or through a link.

∑

h

xs,h − 2
∑

t:{s,t∈M}
gs,t,A − 2

∑
a∈A

xa,s ≤ 0 − (10)

10

The ILP formed is solved using CPLEX [10] and it was observed that it usually

takes less than a second to come up with a solution. In rare cases, it can take much

longer than a second to solve this ILP, but we cut off the solver after 10 seconds and

use the best available solution.

2.4 Online Learning Of Parameters

We have to provide weights v for each dependency, word and potential merger to

the system in order for it to find a good solution. The weights are based on a dot

product of features φ and parameters α,which we learn from data using a supervised

structured technique [4]. We define a loss function L(s, s′) → R which measures how

poor solution s is when the true solution is s′. For each of our training examples, we

compute the oracle solution, the best solution accessible to our system, by minimizing

the loss. Finally, we use the structured averaged perceptron update rule to push our

system’s parameters away from bad solutions and towards the oracle solutions for

each example.

The loss function is designed to measure the similarity between the two depen-

dency trees which contain aligned regions of words and we find this for our system

using LCS alignment of the input strings with the output. Our system retains the

structire within each region and is incapable of replicating any structures which lie

entirely outside the aligned regions. so we concentrate on paths between regions.

Specifically, we define the paths P (s, C) in a tree with a set of regions C as the set of

word pairs w,w′ where w is in one region, w′ is in another, and the dependency path

between w and w′ lies entirely outside all the regions. An example is given in Fig 2.2.

11

left on the side of a highway...were

bodies showedof the men, which signs of torture

state police told Reuters root

Figure 2.2: Paths between retained regions in sentence. Boxes indicate
retained regions.

The following loss function is defined as the number of paths in s and s′ which do

not match and a penalty K1 for keeping extra words and a bonus K2 for retaining

words inside aligned regions.

The loss function L(s, s′;C,K) is given by

|(P(s,C)∪P(s′,C)) \ (P(s,C)∩P(s′,C))|+K1|w ∈ s \C|−K2|w ∈ s∩C|− (11)

For computing the oracle s∗, the above loss function is minimized with respect to

the human authored reference sentence r over the space S of fused dependency trees

the system can produce.

This optimization is again performed by using ILP keeping the same original

constraints but modifying the objective to minimize the loss. This cannot be done

directly, since the existence of a path from s to t must be modeled as a product of x

variables for the dependencies forming the path. However, we can again introduce a

polynomial number of auxiliary variables to solve the problem. We introduce a 0-1

variable qs
h,w for each path start word s and dependency h,w, indicating whether the

dependency from h to w is retained and forms part of a path from s. Likewise, we

create variables qs
w for each word and qs

u,v for mergers. Using these variables, we can

state the loss function linearly as

12

min
∑
s,t

qs
h,t − 2

∑

s,t∈P(r,C)

qs
h,t − (12)

where P (r, C) is the set of paths extracted from the reference solution. The oracle

sentence for the example shown before in section 2.1 is

the bodies THAT showed signs of torture were left on the side of a high-

way in Chilpancingo about an hour north of the tourist resort of Acapulco

state police said

The oracle creates a path from bodies to torture by following a relative clause arc,

which was not in the original dependency tree but was created as an alternative by our

syntactic analysis. (At this stage of processing, we show the dummy relative pronoun

as THAT.) It creates a path from left to bodies by choosing to merge the pronoun

they with its antecedent. Other options, such as linking the two original sentences

with “and”, are penalized because they would create erroneous paths– since there is

no direct path between root and showed, the oracle should not make showed the head

of its own clause.

The features which represent each merger, word and dependency are listed in

Table 2.1. We use the first letters of POS tags (in the Penn Treebank encoding)

to capture coarse groupings such as all nouns and all verbs. For mergers, we use

two measures of semantic similarity, one based on Roget’s Thesaurus[11] and another

based on WordNet [19]. As previously stated, we also hand-annotate the corpus with

true pronoun coreference relationships. Finally, we provide the retained regions found

using LCS alignment between the inputs and the editor’s output. This allows us to

focus on the syntactic problem of generating a good fusion, rather than trying to

13

COMPONENT FEATURES

MERGER SAME WORD
SAME POS TAGS
SAME FIRST LETTER OF THE POS TAGS
POS TAG IF WORD IS SAME
COREFERENT PRONOUN
SAME DEPENDENCY ARC LABEL TO PARENT
ROGET’S SIMILARITY
WORDNET SIMILARITY
FIRST LETTER OF BOTH POS TAGS

WORD POS TAG AND ITS FIRST LETTER
WORD IS PART OF RETAINED CHUNK IN EDITOR’S FUSION

DEPENDENCY POS TAGS OF THE PARENT AND CHILD
FIRST LETTER OF THE POS TAGS
TYPE OF THE DEPENDENCY
DEPENDENCY IS AN INSERTED RELATIVE CLAUSE ARC
PARENT IS RETAINED IN EDITOR’S SENTENCE
CHILD IS RETAINED IN EDITOR’S SENTENCE

Table 2.1: List of Features.

guess what content to select.

Once we have defined the feature representation and the loss function, we calculate

the oracle for each datapoint and for this, we can easily apply any structured online

learning algorithm to optimize the parameters. We adopt the averaged perceptron,

applied to structured learning by [4] For each example, we extract a current solution

st by solving the ILP (with weights v dependent on our parameters α), then perform

an update to α which forces the system away from st and towards the oracle solution

s∗.

14

αt+1 = αt + η(L(st, r)− L(s∗, r))(Φ(s∗)−Φ(st)) − (13)

The update at each timestep t (13) depends on the loss, the global feature vectors

Φ, and a learning rate parameter η. The update leaves the parameters unchanged if

the loss relative to the oracle is 0, or if the two solutions cannot be distinguished in

terms of their feature vectors.

We do 100 passes over the training data, with η decaying exponentially toward

0. At the end of each pass over the data, we set α̂ to the average of all the αt for

that pass [9]. Finally, at the end of training, we select the committee of 10 α̂ which

achieved lowest overall loss and average them to derive our final weights [6]. Since

the loss function is nonsmooth, loss does not decrease on every pass, but it declines

overall as the algorithm proceeds.

2.5 Tree Linearization

The result of the optimization step is a dependency tree which needs to be flattened

to a sentence. The final ordering of the words depend on the original word order of

the input sentences. For merged nodes, modifiers of the merged heads which are not

ordered with respect to each other should be interleaved. The scheme we use involves

trying to place dependencies with the same arc label next to one another.

Conjunctions (our system inserts only “and”) should also be introduced between

arguments of the same syntactic type. We also choose the dummy realization of the

relative pronoun THAT using a trigram language model [21]. Since the focus of the

work was not on linearization, but rather on the selection and tree generation step,

it is plausible that better linearizations of the dependency tree might be achievable

15

using more sophisticated techniques [8].

16

Chapter 3

Results And Conclusion

3.1 Evaluation

Evaluating sentence fusion is a notoriously difficult task [7] with no accepted com-

petitive quantitative metrics. We have to depend on human judges for evaluation.

Our system is compared to three alternatives: the editor’s fused sentence, a read-

ability upper-bound and a baseline formed by splicing the input sentences together

by inserting the word “and” between each one. The readability upper bound is the

output of parsing and linearization on the editor’s original sentence [7]; it is designed

to measure the loss in grammaticality due to our linearization technique.

Native English speakers rated the fused sentences with respect to readability and

content on a scale of 1 to 5 .A scoring rubric based on [17] is used. 12 judges par-

ticipated in the study, for a total of 1062 evaluations1. The retained regions were

boldfaced during the evaluation and the judges were instructed to base their content

score on how well information was retained. For each set of inputs, each judge saw a

single fusion drawn randomly from among the four systems. Results are displayed in

Table 3.1.

1One judge completed only the first 50 evaluations; the rest did all 92.

17

System Readability Content
Editor 4.55 4.56
Readability UB 3.97 4.27
“And”-splice 3.65 3.80
Our System 3.12 3.83

Table 3.1: Results of human evaluation

1 2 3 4 5 Total
“And”-splice 3 43 60 57 103 266
System 24 24 39 58 115 260

Table 3.2: Number of times each Content score was assigned by human judges.

3.2 Discussion

Readability scores clearly indicate that the judges prefer human-authored sentences,

then the readability upper bound, then “and”-splicing and finally our system. This

ordering is unsuprising considering that our system is abstractive, while the remaining

systems are all based on human-authored text, which is guaranteed to be grammatical.

The gap of .58 between human sentences and the readability upper bound represents

loss due to poor linearization; this accounts for over half the gap between our system

and human performance.

Human-authored sentences slightly outperform the readability upper bound on

content. This shows that linearization has a negative effecto on content as both

systems are trying to output the same text. Our system is slightly better than

“and”-splicing. The distribution of scores is shown in Table 3.2. The system gets

more perfect scores, but sometimes gets really low ones too. There is much less

variance for “and”-splices.

18

Our system, while not achieving human performance, does not lag behind by a

large amount in both metrics. It performs really well on some relatively hard sen-

tences and gets most easy fusions right most of the time. For instance, the output on

our example sentence shown in section 2.1 is exactly matching the oracle.

The bodies who showed signs of torture were left on the side of a high-

way in Chilpancingo about an hour north of the tourist resort of Acapulco

state police said.

In some cases, the system output corresponds to the “and”-splice baseline

Input Sentences :

1. Clinton could erupt in red-faced rage.

2. George. W. Bush had his Texas swagger.

System Output:

Clinton could erupt in red-faced rage and George. W. Bush had his Texas

swagger.

The “and”-splice baseline adds extraneous content in many cases. For the following

example, the “and” baseline retains all of the second sentence. While our system

also fuses the two sentences with “and”, it correctly omits the second clause of the

second sentence. Since there is no information selected for retention in that clause

(as determined by the LCS alignment) and it is syntactically independent of the first

clause, the system decides that it can be pruned. The journalist’s fusion relies on

19

recognizing a temporal discourse relationship between the two clauses.

Input Sentences :

1. Uribe appeared unstoppable in July after the army’s rescue of French-

Colombian politician Ingrid Betancourt and 14 other high-profile hostages

held for years by guerrillas.

2. His popularity shot to over 90 percent, but since then news has been bad

for the bespectacled cattle rancher considered Washington’s closest South American

ally.

Editor’s fusion:

Uribe appeared unstoppable in July when his popularity shot to over 90 percent after

the army rescued French-Colombian politician Ingrid Betancourt and 14 other high-

profile hostages held for years by leftist guerrillas.

System Output:

Uribe appeared unstoppable in July after the army rescue of French-colombian politi-

cian Ingrid Betancourt and 14 other high-profile hostages held for years by guerrillas

and his popularity shot to 90 percent.

Because of examples like this, the “and”-splice baseline is qualitatively dissimilar

to human performance across the dataset. While the average length of a human-

authored fusion is 34 words, the average splice is 49 words long. Plainly, editors often

prefer to produce compact fusions rather than splices. Our own system’s output has

an average length of 33 words per sentence, showing that it has properly learned to

trim away extraneous information from the input.

20

Our integration of node alignment into our solution procedure helps the system to

find good correspondences between the inputs. In the following example, the system

was allowed to match “company” to “unit”, but could also match “terrorism” to “ad-

ministration” or to “lawsuit”. Our system correctly merges “company” and “unit”,

but not the other two pairs, to form our output; the editor makes the same decision

in their fused sentence.

Input Sentences :

1. The suit claims the company helped fly terrorism suspects abroad to secret

prisons.

2. Holder’s review was disclosed the same day as Justice Department

lawyers repeated a Bush administration state-secret claim in a lawsuit against

a Boeing Co unit.

Editor’s fusion:

The review was disclosed the same day that Justice Department lawyers repeated

Bush administration claims of state secrets in a lawsuit against a Boeing Co <BA.N>

unit claiming it helped fly terrorism suspects abroad to secret prisons.

System Output:

Review was disclosed the same day as Justice Department lawyers repeated a Bush

administration claim in a lawsuit against a Boeing Co unit that helped fly terrorism

suspects abroad to secret prisons.

21

In many cases, even when the result is awkward or ungrammatical due to poor

linearization, the ILP system makes reasonable choices of mergers and dependencies

to retain. In the following example, the system decides “Secretary-General” belongs

as a modifier on “de Mello”, which is in fact the choice made by the editor. However,

poor ordering creates the improper phrase “de Mello’s death who”.

This example also demonstrates that, when the LCS-aligned retained regions do

not form a grammatical sentence, the system nonetheless keeps enough extra material

to make the output intelligible. The words “could have been” are included in order

to connect “Secretary-General” to “he”, despite the fact that the editor chose not to

use them.

Input Sentences :

1. Barker mixes an account of Vieira de Mello’s death with scenes from his ca-

reer, which included working in countries such as Mozambique, Cyprus, Cambodia,

Bangladesh, and the former Yugoslavia.

2. Had he lived, he could have been a future U.N. Secretary-General.

Editor’s fusion:

Barker recounted the day Vieira de Mello, a Brazilian who was widely tipped as a

future U.N. Secretary-General, was killed and mixes in the story of the 55-year-old’s

career, which included working in countries such as Mozambique, Cyprus, Cambodia,

Bangladesh, and Yugoslavia.

System Output:

Barker mixes an account of Vieira de Mello’s death who could been a future U.N.

22

secretary-general with scenes from career which included working in countries as such

Mozambique Cyprus Cambodia and Bangladesh

Similarly, the next example is a case of bad fusion due to faulty linearization– a

correct linearization of the output tree would have begun “Vice President-elect Joe

Biden, a veteran Democratic senator from Delaware who had contacted to lobby...”

(the object of “contacted”, the word “her”, is omitted because of an unrelated syn-

tactic analysis error).

System Output:

Biden a veteran Democratic senator from Delaware that Vice president-elect and Joe

had contacted to lobby was quoted by the Huffington Post as saying Obama had

made a mistake by not consulting Feinstein on the Panetta choice.

Some errors do occur during the ILP tree extraction process, rather than linearization.

In this example, the system fails to mark the arguments of “took” and “position” as

required, leading to their omission, which makes the output ungrammatical.

System Output:

The White House that took when Israel invaded Lebanon in 2006 showed no signs of

preparing to call for restraint by Israel and the stance echoed of the position.

3.3 Conclusion

The supervised method presented here produces highly readable sentences when ap-

plied to naturally occuring data. It is clearly evident from the readability upper

23

bound that the obvious improvement to make is in the linearizer. A more sophis-

ticated linearizer might improve performance dramatically. However, as mentioned

before, this work focuses more on content selection. Also, we try to avoid the problem

of choosing the content to fuse as this is a very challenging discourse problem by itself.

Paraphrase rules would help our system replicate some output structures it is cur-

rently unable to match (for instance, it cannot convert between the copular “X is Y”

and appositive “X, a Y” constructions). Currently, the system has just one such rule,

which converts main clauses to relatives. Others could potentially be learned from a

corpus, as in [3].

While an automated pronoun coreference system might lead to a slight dip in

performance, we do not expect it to be a great amount. Also, some bad fusions are

due to parsing errors.

A straightforward task is to use this for fusion in single document summarization

and finally, the system could also be trained for fusing similar sentences and we hope

to make use of the new corpus of [16] for this purpose.

24

Bibliography

[1] Regina Barzilay and Kathleen McKeown. Sentence fusion for multidocument

news summarization. Computational Linguistics, 31(3):297–328, 2005.

[2] James Clarke and Mirella Lapata. Global inference for sentence compression: An

integer linear programming approach. J. Artif. Intell. Res. (JAIR), 31:399–429,

2008.

[3] Trevor Cohn and Mirella Lapata. Sentence compression as tree transduction. J.

Artif. Intell. Res. (JAIR), 34:637–674, 2009.

[4] Michael Collins. Discriminative training methods for hidden Markov models:

Theory and experiments with perceptron algorithms. In Proceedings of the 2002

Conference on Empirical Methods in Natural Language Processing, pages 1–8.

Association for Computational Linguistics, July 2002.

[5] Hal Daume III and Daniel Marcu. Generic sentence fusion is an ill-defined sum-

marization task. In Stan Szpakowicz Marie-Francine Moens, editor, Text Sum-

marization Branches Out: Proceedings of the ACL-04 Workshop, pages 96–103,

Barcelona, Spain, July 2004. Association for Computational Linguistics.

[6] Jonathan L. Elsas, Vitor R. Carvalho, and Jaime G. Carbonell. Fast learning of

document ranking functions with the committee perceptron. In WSDM, pages

55–64, 2008.

25

[7] Katja Filippova and Michael Strube. Sentence fusion via dependency graph

compression. In Proceedings of the 2008 Conference on Empirical Methods in

Natural Language Processing, pages 177–185, Honolulu, Hawaii, October 2008.

Association for Computational Linguistics.

[8] Katja Filippova and Michael Strube. Tree linearization in English: Improving

language model based approaches. In Proceedings of Human Language Tech-

nologies: The 2009 Annual Conference of the North American Chapter of the

Association for Computational Linguistics, Companion Volume: Short Papers,

pages 225–228, Boulder, Colorado, June 2009. Association for Computational

Linguistics.

[9] Yoav Freund and Robert E. Schapire. Large margin classification using the

perceptron algorithm. Machine Learning, 37(3):277–296, 1999.

[10] Ilog, Inc. Cplex solver, 2003.

[11] Mario Jarmasz and Stan Szpakowicz. Roget’s thesaurus and semantic similarity.

In Conference on Recent Advances in Natural Language Processing, pages 212–

219, 2003.

[12] Hongyan Jing and Kathleen McKeown. The decomposition of human-written

summary sentences. In SIGIR, pages 129–136, 1999.

[13] Emiel Krahmer, Erwin Marsi, and Paul van Pelt. Query-based sentence fusion is

better defined and leads to more preferred results than generic sentence fusion.

In Proceedings of ACL-08: HLT, Short Papers, pages 193–196, Columbus, Ohio,

June 2008. Association for Computational Linguistics.

[14] Erwin Marsi and Emiel Krahmer. Explorations in sentence fusion. In Proceedings

of the 10th European Workshop on Natural Language Generation, pages 109–117,

2005.

26

[15] David McClosky, Eugene Charniak, and Mark Johnson. Effective self-training

for parsing. In Proceedings of the Human Language Technology Conference of

the NAACL, Main Conference, pages 152–159, 2006.

[16] Kathleen McKeown, Sara Rosenthal, Kapil Thadani, and Coleman Moore. Time-

efficient creation of an accurate sentence fusion corpus. In Human Language

Technologies: The 2010 Annual Conference of the North American Chapter of

the Association for Computational Linguistics, pages 317–320, Los Angeles, Cal-

ifornia, June 2010. Association for Computational Linguistics.

[17] Tadashi Nomoto. A comparison of model free versus model intensive approaches

to sentence compression. In Proceedings of the 2009 Conference on Empiri-

cal Methods in Natural Language Processing, pages 391–399, Singapore, August

2009. Association for Computational Linguistics.

[18] Ted Pedersen, Siddharth Patwardhan, and Jason Michelizzi. Wordnet::Similarity

- measuring the relatedness of concepts. In Daniel Marcu Susan Dumais and

Salim Roukos, editors, HLT-NAACL 2004: Demonstration Papers, pages 38–41,

Boston, Massachusetts, USA, May 2 - May 7 2004. Association for Computational

Linguistics.

[19] Philip Resnik. Using information content to evaluate semantic similarity in a

taxonomy. In IJCAI’95: Proceedings of the 14th international joint conference

on Artificial intelligence, pages 448–453, San Francisco, CA, USA, 1995. Morgan

Kaufmann Publishers Inc.

[20] Jeffrey C. Reynar and Adwait Ratnaparkhi. A maximum entropy approach

to identifying sentence boundaries. In Proceedings of the Fifth Conference on

Applied Natural Language Processing, pages 16–19, Washington D.C., 1997.

27

[21] Andreas Stolcke. SRILM-an extensible language modeling toolkit. In Proceedings

of the International Conference on Spoken Language Processing, pages 257–286,

November 2002.

28

