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ABSTRACT 

NoSQL data storage systems provide high scalability and 

availability in exchange for limited transactional guarantees. In 

many cases, however, an application cannot give up transactional 

support but still needs the scalability provided by such systems. 

One approach for overcoming this limitation is to implement 

Snapshot Isolation (SI) on top of these systems. SI prevents most 

non-serializable executions and its optimistic concurrency control 

never delays read-only transactions. Nevertheless SI does not 

guarantee the serializability that many applications require. For 

example, the “write anomaly” is a well-known problem permitted 

by SI that violates data consistency [4]. This problem occurs 

when two or more concurrent transactions update a data item that 

the other reads. To resolve this problem, we present a new 

commit algorithm to ensure serializable SI in a large-scale 

distributed system. The algorithm takes a pessimistic approach to 

detect and avoid non-serializable execution schedules. We also 

include a performance study that demonstrates both the 

correctness and scalability of our new algorithm.  

1. INTRODUCTION 

The fast growing size of data has necessitated the need for 

large-scale and highly available data store services. It has been 

widely recognized that NoSQL systems, such as HBase [8], are 

scalable in such situations. These systems usually achieve 

scalability through horizontally partitioning data across a cluster 

of shared-nothing nodes. However, unlike traditional relational 

databases managements systems (RDBMS), NoSQL systems 

provide limited support for transactions, which is critical to 

large-scale, enterprise-level business applications. 

Yahoo’s Reliable and efficient Transaction Status Oracle (ReTSO) 

[1] middleware aims at providing transactional support on HBase. 

It features a centralized lock-free concurrency control algorithm 

that implements snapshot isolation (SI). Although ReTSO lays 

the foundation for supporting distributed transactions in HBase, it 

suffers from the “write anomaly” due to the nature of snapshot 

isolation and its commit algorithm. For example, executions 

under SI can corrupt data when programs interleave, even though 

each program individually preserves the databases’ integrity 

constraints. Many large-scale applications require stronger 

transactional guarantees, namely serializability [6]. Serializability 

ensures that every concurrent execution of transactions be 

equivalent to running the transactions one after another in some 

order. 

In this report, we describe a serializable SI transaction commit 

algorithm that guarantees serializability in large-scale, distributed 

DBMSs. The key idea of our algorithm is that by keeping 

additional information at a central server, the system is able to 

detect at run time distinctive conflict patterns that occur in every 

non-serializable execution (write anomaly) under SI. Our 

detection approach is conservative and prevents every 

non-serializable execution at the cost of few unnecessary aborts. 

Experiments show that the algorithm achieves serializability at 

the cost of 23% of transactions per second committed by the 

original system in normal cases.  

Various techniques [3,4,6,11,12,13] have been developed on 

traditional RDBMSs to ensure serializability in SI. Our algorithm 

is inspired and conceptually similar to the algorithm in [3]. 

Implementing such an algorithm in a distributed system like 

HBase poses several unique challenges. For example, in 
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traditional RDBMSs, we can track transaction dependencies from 

a centralized lock table, while the same information is not 

available in the current ReTSO and HBase implementation.  

The remainder of this report is organized as follows. Section 2 

briefly explains the theory of snapshot isolation. Section 3 

introduces the ReTSO middleware for HBase and discusses the 

write anomaly that arises in its commit algorithm. Section 4 

describes our new commit algorithm that is designed to fix the 

problem. This new commit algorithm is evaluated in Section 5.  

2. SNAPSHOT ISOLATION 

The ideal execution schedule of transactions in a distributed 

database is when all the interleaved concurrent executions of 

transactions are equivalent [4] to serial executions. Such a 

schedule is said to be serializable. One common approach to 

ensuring a serializable schedule in a distributed system is to use 

two-phase-commit (2PC) [14]. But a previous study [16] has 

shown that this approach does not scale well because one 

participant of a distributed transaction may block while waiting 

for other participants of the same transaction. 

Snapshot Isolation (SI) is an isolation level that does not ensure 

serializability in database management systems (DBMS). 

However, it is attractive to implement it on distributed databases, 

since it prevents most of the common concurrency problems [4]  

and increases the number of concurrent of transactions by never 

having a read operation block any updates. Besides these, HBase 

keeps multiple versions of the same data item, which is necessary 

to implement SI. 

In SI, a transaction Ti receives a start timestamp tsi when it starts 

and a commit timestamp tci when it commits. Whenever Ti reads 

data item X, it reads the version that is created by the last 

committed transaction of all the transactions that committed 

before tsi. Whenever Ti updates the data item X, it creates a new 

version. SI also enforces a restriction called 

First-Committer-Wins (FCW) rule: if transaction T2’s commit 

timestamp tc2 is in transaction T1’s transaction life [ts1, tc1], T1 

can successfully commits only if T2 did not write data that T1 also 

wrote, otherwise, T1 will abort. 

The problem of making SI serializable has been extensively 

studied in [3,6,11,12,13]. The key idea of solving this problem is 

to avoid the write anomaly problem. The write anomaly is a 

concurrent problem permitted by SI that can violate data integrity 

and consistency. It happens when two or more concurrent 

transactions when one transaction changes a value that the other 

transaction reads. FCW allows this, since different items are 

changed in each transaction. A detailed example of the write 

anomaly is discussed in Section 3.4. The problem of how to 

identify the transactions that causes the write anomaly is 

addressed in [6]. This work uses Dependency Serialization 

Graph (DSG) to identify transactions at runtime. A DSG 

contains vertices representing transactions and three types of 

dependency edge defined below:  

RW-dependency edge (Vulnerable edge): There is a 

RW-dependency from T1 to T2, if T1 reads a version of item X and 

T2 produces a new immediate successor version X.  

WW-dependency edge: There is a WW-dependency between 

T1 and T2, if T1 produces a version of data item X and T2 produces 

a new immediate successor version X. T1 and T2 can’t execute 

concurrently.  

WR-dependency edge: There is a WR-dependency from T1 to 

T2, if T1 produces a version of data item X and commits, then later 

T2 reads X. T1 and T2 cannot execute concurrently since T2 will 

not be able to see the version T2 produced unless T1 commits 

before T2 starts.  

Figure 1 shows examples of these three dependency edges 

described above.  

T2 Read(X) Commit

T1 Write(X) Commit

WR-dependency

increasing time

T2 Write(X) Commit

T1 Write(X) Commit

WW-dependency

T2 Write(X) Commit

T1 Read(X) Commit

RW-dependency

 

Figure 1 WR/WW/RW-dependency 

The write anomaly happens if the DSG of the program contains a 

cycle and there are two vulnerable edges in a row as part of the 
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cycle. Figure 2 shows an example. The main work of [6] 

demonstrates that if a DSG is free of such cycles, then every 

execution of the programs is serializable. In Section 4, we discuss 

in detail how to detect and eliminate the write anomaly 

T1 T3

T2

RW-dependency RW-dependency

any edge

 

Figure 2 DSG of a non-serializable execution schedule 

3. ARCHITECTURE OVERVIEW 

This section introduces HBase and ReTSO architecture and 

describes the lock-free commit algorithm ReTSO uses for 

concurrency control and its flaws. 

3.1. HBase Overview 

HBase [8] is an open-source implementation of Google’s 

BigTable [2]. It is a distributed multi-dimensional map that maps 

a row key, column key and a timestamp to an uninterpreted array 

of bytes:  

{row:string, column:string; time:int64}-> bytes 

In HBase, applications store data into tables composed of rows 

and columns. An HBase table contains multiple versions of the 

same data indexed by timestamps. These timestamps can be 

automatically generated by HBase or be explicitly assigned by 

client applications. 

HBase employs a master-slave topology. Tables are horizontally 

partitioned into disjoint regions stored on slave machines called 

RegionServer. HBase provides single-row-level exclusive locks, 

but does not support multi-row atomicity.  

3.2. ReTSO Architecture 

ReTSO [9] is an open-source middleware project started at Yahoo! 

that uses snapshot isolation and to add lock-free transactional 

support on top of HBase. 

ReTSO has two main components: Transaction Client Library 

(TCL) and Transaction Status Oracle (TSO). Applications use 

the TCL to request start timestamps from the TSO server, 

optimistically writes to an HBase RegionServer, and finally send 

commit requests to TSO. The TSO server is a single server which 

monitors the modified rows by transactions and uses that to detect 

write-write conflict. Additionally, The TSO server uses a 

distributed logging service called BookKeeper [10] to keep a 

write-ahead log and to recover the data in memory in case of 

failure. Figure 3 shows the architecture of ReTSO.  

Transaction 
Client 
Library

RegionServer

RegionServer

RegionServer

HBase

Transaction Status Oracle

BookKeeper

Application

committed
row version tc

r1 v6 13864368
r3 v4 14264369
… … …

   lastCommitted
row tc
r1 13864368
r6 14264374
… …

 

Figure 3 ReTSO architecture overview 

To implements SI, the TSO server keeps two hash tables, 

committed and lastCommited, in memory. The lastCommited 

table contains the most recent commit timestamp of modified 

rows. The committed table contains the commit timestamps of 

completed transactions that created a new version of a particular 

row. 

3.3. Snapshot Isolation in ReTSO 

A typical transaction with read and write operations in ReTSO 

processes as described below:  

Transaction Start. An application uses the TCL to request a 

start timestamp from the TSO server when it initiates a 

transaction. The TSO server assigns a unique timestamp to each 

transaction. This start timestamp is also used as transaction ID. 

Write. A write is performed optimistically by simply writing 

the new data with a version equal to the transaction starting 

timestamp to HBase RegionServer. Each transaction keeps 

references to all the rows it modified in its own in-memory object 

at the client side. Whenever the transaction aborts, it cleans up the 
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new version of the row that it updated.  

Read. In order to read a row from the database, the transaction 

must obtain a portion of all the versions of that row that is 

committed before its own start timestamp. Noted that a 

transaction may read a version of a row created by a failed write 

operation, it must verify the version by querying the TSO server. 

A version is valid if the transaction that created it is committed. A 

read operation fetches 10 (by default) latest versions before its 

own start timestamp and verifies each version in descending 

order starting from the most recent one until the TSO server 

acknowledges that the transaction that created the version has 

committed. If none are acknowledged, the TCL fetches more 

versions from HBase. Algorithm 1 [1] shows how the TSO 

server answers verification queries. 

Algorithm 1 isCommitted (row r, timestamp version,  

timetamp ts) -> {true, false} 

1: if committed(r, version) == null  

2:   return false; 

3: else 

4:   return committed(r, version) < ts 

Transaction Commit. When a client commits a transaction, 

the TCL sends a commit request along with all the row identifiers 

the transaction modified to the TSO server. The TSO server 

checks if each row modified follows FCW rule by looking up the 

lastCommited table. This check guarantees that there are no 

concurrent transactions updating the same data item. If the check 

passes, it will update the commited table and send a commit 

acknowledgement back to the client. Otherwise, it sends a failure 

response to the client. Algorithm 2 [1] shows how the TSO 

server processes commit request. 

Algorithm 2 CommitRequest (modified row set R, 

                         timestamp ts) -> {commit, abort} 

1: for each row r belongs to R 

2:   if lastCommited(r) > ts 

3:     return abort 

4: end for  

5: for each row r belongs to R 

6:   committed(r, ts)  tc //assign a new commit timestamp  

7: end for 

8: return commit 

Cleanup.  After a transaction aborts, the TCL deletes all the 

versions the transaction created for all of the rows that it 

modified.  

Client RegionServer1 RegionServer2 TSO

Start timestamp request

ts

Start transaction T1

Read(X)

X
Read a row

Version verfication request

Valid

Verify a verison

Write(Y, ts)

Write a row
Commit Request

Commit T1 Committed

Committed

 Figure 4 Sequence diagram of a successful commit. 

Transacion T1 reads X and updates Y.  

3.4. Write Anomaly in ReTSO 

The current implementation of ReTSO does not take the write 

anomaly into consideration. Data integrity can be corrupted if it 

occurs. For example, suppose we have two values X and Y that 

represent checking account and savings account of a certain 

customer, with an invariant that X+Y>0. The bank’s business 

logic may permit either account to be overdrawn, as long as the 

sum of the account balances remains positive. Assume that 

initially X0=50 and Y0=50. Transaction T1 with a start timestamp 

ts1=1 reads X0 and Y0, subtracts 90 from X and creates a new 

version X1=-40. Transaction T2 with a start timestamp ts2=2 

concurrently reads X0 and Y0, subtracts 80 from Y and creates a 

new version Y2=-30. T1 and T2 respectively send their commit 

request to the TSO server. The TSO server accept both requests 

because T1 and T2 update different data items X and Y respectively 

and no write-write conflict will be detected in lastCommited table. 

In this case each update transaction is safe by itself, but when 

both occur, the database will violates the invariant X+Y>0. This 

problem cannot be detected using information available in the 

TSO server. Hence a new mechanism is needed to avoid the write 

anomaly. 
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4. MITIGATING WRITE ANOMALIES 

We now describe a new commit algorithm that prevents the write 

anomaly and guarantees serializable SI in a distributed DBMS. 

Our new algorithm maintains additional transaction dependency 

information at the TSO server and uses it to detect the distinctive 

pattern of non-serializable executions. This section discusses in 

detail how the write anomaly is detected and various design 

issues in implementing the new algorithm. 

4.1. Write Anomaly Detection 

To avoid complicating the original architecture, detections will be 

performed by the TSO server. The design should follow three 

goals: (1) minimizing the process overhead; (2) ensuring 

correctness; (3) maintaining the high scalability of the original 

system. These three goals affect the various design choices 

described below. 

Conservative Detection vs Precise Detection. Many 

approaches have been proposed to avoid the write anomaly in 

RDBMSs. These approaches can be generally categorized into 

two groups. The work in [11][13] keeps a complete DSG graph in 

memory while the system is running, which leads to aborting 

only the transactions that causes write anomalies. The other 

techniques [3][12] tend to have less overhead and only need to 

keep small amount of information on a central server, however, 

they are often pessimistic and are afflicted with unnecessary 

aborts. To achieve scalability and avoid high processing overhead, 

we choose the conservative detection algorithm. Our algorithm 

detects a potentially non-serializable execution whenever it finds 

two consecutive RW-dependency edges in the DSG, where each 

of the edges involves two concurrent transactions. Whenever such 

a situation is detected, one of these transactions will be aborted. 

To support this algorithm, the TSO server needs to maintain the 

inConflict and outConflict references for each transaction T, 

tracking the transactions that have RW-dependencies with T. 

RW-Dependency Detection. The key to detecting the write 

anomaly lies in detecting the RW-dependencies between 

transactions. There are two situations when two transactions 

could have an RW-dependency. One situation arises when a 

transaction T1 reads a version of an item X, and the version it 

reads is not the most recent version of X. In this case the writer, 

transaction T2, of any more recent version of X was active after T1 

started, and so there is an RW-dependency from T1 to T2. This 

allows detecting RW-dependency edges for which the read 

operation is interleaved after a write. To detect edges where a 

read is performed before a new version is created by a concurrent 

transaction, we need to somehow keep track of which row is read 

by which transaction. When a commit request for transaction T1 

comes, using this information, the TSO server checks whether 

each of its updates conflicts an uncommitted read transaction T2. 

In RDBMS, transaction dependency information can be retrieved 

in lock table. Lacking of such data structure in HBase, we build a 

similar in-memory hash table. 

Memory Limitation. For highly concurrent applications with 

many clients, it is difficult for a single TSO sever to keep all of 

the information that is needed in memory. Thus, a timestamp 

low-bound is set to avoid the TSO server’s memory from 

overflowing. All of the in-memory lookup tables only monitor 

transactions that start after than the bound. Any uncommitted 

transaction with a start timestamp earlier than the bound is 

aborted. An analysis of the system’s memory usage is discussed 

in 5.4. 

Victim Selection. When two transactions form an 

RW-dependency cycle, either transaction could be aborted 

without loss of correctness in order to break the cycle and ensure 

serializability. Our new algorithm chooses to abort the transaction 

that has not been committed to reduce the overhead of cascading 

aborts. When both transactions are not committed, aborting the 

younger of the two transactions is preferred, since it may increase 

the proportion of complex transactions running to completion.  

4.2. Implementation Details 

Transaction Status Oracle
committed

row version tc
… … …

   lastCommitted
row tc
… …

conflicts
transaction inConflict outConflict

t1 t2 null
t3 null null
… … …

    readRecords
row transaction
r3 t3
r9 t8
… …

 

Figure 5 In-memory Tables of the TSO server 
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Our algorithm needs the TSO to maintain two additional 

information tables in its local memory. The conflict table tracks 

RW-dependencies between transactions. The readRecords table 

tracks rows read by the uncommitted transactions and the 

transaction that reads it. 

The following shows the modification we made to the original 

Algorithm 1 and Algorithm 2 described in Section 3.3. The 

pseudo-code of our new algorithm is listed in appendix.  

Transaction Start. When a client requests to initiate a new 

transaction, the TSO server assigns the transaction a start 

timestamp and inserts a new entry into the conflict table. 

Read. Transactions perform modified read operations by 

reading versions both before and after its start timestamp. When a 

transaction reads a version that is created after its own timestamp, 

it forms an RW-dependency edge to the transaction that creates 

the newer version. For versions that are earlier than the 

transaction’s start timestamp, the client verifies each version in 

descending order starting with the nearest one until one of them is 

valid. The TSO server keeps every successful read in the 

readRecords table until this transaction is committed.  

Write.  Write operations perform an optimistic write as 

described in the original implementation. 

Transaction Commit.  When a client commits a transaction, 

it sends a commit request to the TSO server.  The TSO server 

handles these requests using modified-CommitRequest method. 

Other than checking for ww-conflicts in Algorithm 2, it checks 

that for each row that transaction T1 updated whether it was read 

by an uncommitted transaction T2 whose start timestamp is earlier 

than T1’s commit timestamp. If such a row exists, a 

RW-dependency from T2 to T1 is marked.  

When a RW-dependency edge is detected between a reading 

transaction and a writing transaction, the conflicts table is 

populated with the proper tuple and the victim selection policy 

discussed in Section 4.1 is applied. 

5. PERFORMANCE EVALUATION 

In this section, we present the correctness and cost evaluations of 

our new algorithm. For the correctness evaluation, the goal is to 

validate that the new transaction commit algorithm guarantees 

serializable transactions schedules correctly. For the cost 

evaluation, we present a comparative evaluation between the new 

commit algorithm and the original one. Lastly, we explore the 

memory usage in the TSO server. 

Our evaluation is performed on a dedicated HBase cluster of six 

nodes, each running on a machine with Linux 2.6.32, 6 GB of 

RAM, and a 4-core 3.0GHz AMD Phenom II CPU. The TSO 

server is deployed on another dedicated machine with the same 

hardware configuration. The benchmark driver is written in Java 

and runs on eight separate client machines, each equipped with 

Linux 2.6.32, 4 GB of RAM and a dual-core 2.0GHz AMD 

Athlon CPU. We emulate a varying number of concurrent clients 

using multithreading. We denote the number of concurrent client 

threads as multiprogramming level (MPL),  

5.1. SmallBank Benchmark Overview 

The SmallBank benchmark is a workload that is specifically 

designed to illustrate the write anomaly permitted by SI [7]. 

SmallBank is a small banking database consisting of three tables: 

Account (Name, CustomerID), Saving (CustomerID, Balance), 

Checking (CustomerID, Balance). Each tuple in Account table 

represents a customer. The primary key of Account is Name. 

CustomerID is a primary key for both Saving and Checking 

tables. 

Account

PK Name

 CustomerID

Saving

PK CustomerID

 Balance

Checking

PK CusomerID

 Balance
 

Figure 6 Tables of the SmallBank Benchmark 

The SmallBank benchmark executes five different transaction 

programs.  

Balance, or Bal(N), looks up Account to get the CustomerID 

value for N, and then returns the sum of savings and checking 

balances for that CustomerID. 

DepositChecking, or DC(N, V), looks up the Account table to 

get CustomerID corresponding to the name N and increase the 

checking balance by V for that CustomerID. 

TransactSaving, or TS(N, V), looks up the Account table to get 
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CustomerID corresponding to the name N and increases the 

savings balance by V for that customer. 

Amalgamate, or Amg(N1, N2), reads the balances for both 

accounts of customer N1, then sets both to zero, and finally 

increases the checking balance for N2 by the sum of N1’s 

previous balances. 

WriteCheck, or WC(N, V), looks up Account to get the 

CustomerID value for N, evaluates the sum of saving and 

checking balances for that CustomerID. If the sum is less than V, 

it decreases the checking balance by V+1 (reflecting a penalty of 

1 for overdrawing), otherwise it decreases the checking balance 

by V.  

The client threads execute transactions one at a time. The 

transaction type is chosen uniformly at random from the five 

transactions. The database is populated with 18,000 randomly 

generated customers and their checking and saving accounts. The 

workload is skewed so that some customers are accessed more 

often than others. We define a certain number of customers as 

“hotspot”. 90% of all transactions deal with a customer who is 

chosen uniformly from 1000 customers. The other 10% of 

transactions access customers from outside the hotspot. In the 

normal contention experiments the hotspot has 1,000 customers, 

but in the high contention experiments, the hotspot is made to 

have 10 customers only. Each experiment is repeated three times 

and the average of results is calculated. Before each experiment, 

we start the HBase and ReTSO servers and execute a 30-second 

warm-up, allowing the clients to reach full MPL. At the end of 

each experiment, we bring down the HBase and ReTSO server 

after a 30-second cold down.  

5.2. Correctness 

The SmallBank benchmark requires that the total balance of the 

two account of the same customer should be non-negative. Thus, 

if a balance inquiry transaction reads a negative total balance, it 

indicates that a write anomaly has occurred. Additionally, at the 

end of each benchmark run, the total balance of each joint 

account is checked to ensure correctness.  

We conduct the experiments using 16 client threads. Each 

experiment runs the SmallBank benchmark for 30 minutes. 

Figure 9 shows that out of the total number of aborts, 

approximately 11% are due to the write anomaly problem. The 

accumulated number of invalid balance queries over time and the 

total number of corrupted customer accounts is given in Figure 7 

and Figure 8. The results show that applying our new commit 

algorithm avoids every non-serializable execution permitted in 

ReTSO.  

 

Figure 7 Accumulated number of negative balance queries 

over time. 

 

Figure 8 Total number of invalid accounts. 

 
Figure 9 Aborts distribution in three experiments 

5.3. Cost of Serializability 

Another important aspect to evaluate is the overhead of 

supporting serializability. We run the SmallBank benchmark with 

MPL from 8 to 256 under both normal contention and high 

contention configurations. In the normal cases, the cost of 
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ensuring serializability shown in Figure 10 is approximately 23% 

of the original committed transactions per second (TPS). In the 

high contention experiments, the size of the hotspot region is 

changed from 1000 customers to only 10 customers. The 

increased contention from the small hotspot reduces the overall 

throughput. TPS shows a significant drop in Figure 11, due to an 

increasing number of conflicts between transactions.  

The results in Figure 10 and Figure 11 show a linear growth in 

throughput over number of client treads when MPL is below 50. 

When MPL is over 50, our client machine is saturated because the 

overhead of treads switching on its two CPU cores. 

 

Figure 10 Throughput over MPL 

 

Figure 11Throughput over MPL under high contention 

5.4. Memory Usage 

 

Figure 12 Memory usage in the TSO server 

Memory usage in the TSO server is evaluated respectively with 

MPL from 8 to 256. Figure 12 shows a steady growth of memory 

use over the number of client threads. This is mainly due to the 

growing size of the four in-memory hash tables used to maintain 

the additional information needed by our algorithm. The TSO 

server running on server with 6GB RAM is predicted to exhaust 

its memory on 500 client processes if we assume a linear growth 

of memory use over the number of clients according to Figure 12 

Figure 13 shows the relative size of the four hash tables TSO has 

in memory. A rapid growth in percentage is shown for the 

committed table due to the growing number of committed 

transactions the TSO server has to keep track of. This table, used 

for verifying read operations and guaranteeing correctness, is the 

main usage of the TSO server’s memory.  

 

Figure 13 Relative Table Size 

6. FUTURE WORK 

In the future, we hope to improve the precision of our write 

anomaly detection algorithm by evaluating and reducing the rate 

of false positives. We have not yet carried out a thorough analysis 

of the impact of unnecessary aborts, but we expect that the 

precise detection would require a prohibitive amount of 

additional memory and CPU time. Additionally, we are extending 

our approach to other NoSQL large-scale data services. 

7. CONCLUSION 

This report describes a new transaction commit protocol that 

ensures serializable SI in distributed database management 

systems. The new mechanism makes use of additional 

information kept at a centralized coordinator to detect and prevent 

non-serializable executions. We demonstrate the correctness and 

scalability of our new algorithm by experiments. The evaluation 

shows that with the cost of only less than 23% throughput loss, 

we achieve serializability in a distributed NoSQL DBMS. 
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APPENDIX 

Serializable SI Commit Algorithms 

The TSO server processes transaction initiation requests from 

clients 

modified-start(transaction T) 

1: ts new timestamp 

2: insert an empty entry for T in the conflict table 

3: send start time stamp ts to client 

 

Read operation performed by transaction T1 

modified-read(row r, version set V,  timestamp ts1) 

1: for each version v belongs to V 

2:   Let ts2 be start timestamp of transaction T2 that created v. 

3:   if ts2> ts1 

4:     markConflict(T2,T1) 

5:   else if modified-isCommitted(r,v,ts1)      

6:     return v; 

7: end for 

http://hbase.apache.org/
https://github.com/dgomezferro/omid/wiki
http://zookeeper.apache.org/bookkeeper/
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8: fetch more versions  

9: go to line 1 

 

The TSO server verifies the version that clients read. 

modified-isCommitted (row r, timestamp version, timetamp ts ) 

-> {true, false} 

1: if committed(r, version) == null  

2:   return false; 

3: else 

4:   if committed(r, version) < ts 

5:       insert (r, version) into the readRecords table 

6:       return true 

7:   else  

8:       return false 

 

The TSO server processes commit requests from clients for 

transaction T1.  

modified-CommitRequest (modified row set R, timestamp ts1) -> 

{commit, abort} 

1: for each row r belongs to R 

2:   if lastCommited(r) > ts1 

3:     return abort 

4: end for  

5:  

6: for each row r belongs to R 

7:   committed(r, ts1)  tc1 //assign a new commit timestamp 

8: end for 

9: for each row r belongs to R 

10:   if readRecords(r)!=null 

11:     let T2 be the uncommitted transaction that read r 

12:     if ts2<tc1 

13:       markConflict(T2,T1) 

14: end for 

15: return commit 

 

When a RW-dependency is identified, the TSO server records it 

in the conflict table and performs proper aborts. 

markConflict(Transaction Reader, Transaction Writer) 

1: if Reader has committed  

AND conflicts(Reader).inConflict!=null 

2   abort(Writer) 

3   return 

4: if Writer has committed  

AND conflicts(Writer).outConflicts!=null 

5:   abort(Reader) 

6:   return 

7: if conflicts(Writer).outConflict!=null  

OR conflicts(Reader).inConflicts!=null 

8: abort the younger transaction of Reader and Writer 

9: return 

10: conflicts(Reader).outConflicttrue 

11: conflicts(Writer).inConflicttrue; 
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