
 1 / 10

Serializable Snapshot Isolation in Shared-Nothing,

Distributed Database Management Systems

Yang Lu

Brown University

yanglu@cs.brown.edu

ABSTRACT

NoSQL data storage systems provide high scalability and

availability in exchange for limited transactional guarantees. In

many cases, however, an application cannot give up transactional

support but still needs the scalability provided by such systems.

One approach for overcoming this limitation is to implement

Snapshot Isolation (SI) on top of these systems. SI prevents most

non-serializable executions and its optimistic concurrency control

never delays read-only transactions. Nevertheless SI does not

guarantee the serializability that many applications require. For

example, the “write anomaly” is a well-known problem permitted

by SI that violates data consistency [4]. This problem occurs

when two or more concurrent transactions update a data item that

the other reads. To resolve this problem, we present a new

commit algorithm to ensure serializable SI in a large-scale

distributed system. The algorithm takes a pessimistic approach to

detect and avoid non-serializable execution schedules. We also

include a performance study that demonstrates both the

correctness and scalability of our new algorithm.

1. INTRODUCTION

The fast growing size of data has necessitated the need for

large-scale and highly available data store services. It has been

widely recognized that NoSQL systems, such as HBase [8], are

scalable in such situations. These systems usually achieve

scalability through horizontally partitioning data across a cluster

of shared-nothing nodes. However, unlike traditional relational

databases managements systems (RDBMS), NoSQL systems

provide limited support for transactions, which is critical to

large-scale, enterprise-level business applications.

Yahoo’s Reliable and efficient Transaction Status Oracle (ReTSO)

[1] middleware aims at providing transactional support on HBase.

It features a centralized lock-free concurrency control algorithm

that implements snapshot isolation (SI). Although ReTSO lays

the foundation for supporting distributed transactions in HBase, it

suffers from the “write anomaly” due to the nature of snapshot

isolation and its commit algorithm. For example, executions

under SI can corrupt data when programs interleave, even though

each program individually preserves the databases’ integrity

constraints. Many large-scale applications require stronger

transactional guarantees, namely serializability [6]. Serializability

ensures that every concurrent execution of transactions be

equivalent to running the transactions one after another in some

order.

In this report, we describe a serializable SI transaction commit

algorithm that guarantees serializability in large-scale, distributed

DBMSs. The key idea of our algorithm is that by keeping

additional information at a central server, the system is able to

detect at run time distinctive conflict patterns that occur in every

non-serializable execution (write anomaly) under SI. Our

detection approach is conservative and prevents every

non-serializable execution at the cost of few unnecessary aborts.

Experiments show that the algorithm achieves serializability at

the cost of 23% of transactions per second committed by the

original system in normal cases.

Various techniques [3,4,6,11,12,13] have been developed on

traditional RDBMSs to ensure serializability in SI. Our algorithm

is inspired and conceptually similar to the algorithm in [3].

Implementing such an algorithm in a distributed system like

HBase poses several unique challenges. For example, in

mailto:yanglu@cs.brown.edu

 2 / 10

traditional RDBMSs, we can track transaction dependencies from

a centralized lock table, while the same information is not

available in the current ReTSO and HBase implementation.

The remainder of this report is organized as follows. Section 2

briefly explains the theory of snapshot isolation. Section 3

introduces the ReTSO middleware for HBase and discusses the

write anomaly that arises in its commit algorithm. Section 4

describes our new commit algorithm that is designed to fix the

problem. This new commit algorithm is evaluated in Section 5.

2. SNAPSHOT ISOLATION

The ideal execution schedule of transactions in a distributed

database is when all the interleaved concurrent executions of

transactions are equivalent [4] to serial executions. Such a

schedule is said to be serializable. One common approach to

ensuring a serializable schedule in a distributed system is to use

two-phase-commit (2PC) [14]. But a previous study [16] has

shown that this approach does not scale well because one

participant of a distributed transaction may block while waiting

for other participants of the same transaction.

Snapshot Isolation (SI) is an isolation level that does not ensure

serializability in database management systems (DBMS).

However, it is attractive to implement it on distributed databases,

since it prevents most of the common concurrency problems [4]

and increases the number of concurrent of transactions by never

having a read operation block any updates. Besides these, HBase

keeps multiple versions of the same data item, which is necessary

to implement SI.

In SI, a transaction Ti receives a start timestamp tsi when it starts

and a commit timestamp tci when it commits. Whenever Ti reads

data item X, it reads the version that is created by the last

committed transaction of all the transactions that committed

before tsi. Whenever Ti updates the data item X, it creates a new

version. SI also enforces a restriction called

First-Committer-Wins (FCW) rule: if transaction T2’s commit

timestamp tc2 is in transaction T1’s transaction life [ts1, tc1], T1

can successfully commits only if T2 did not write data that T1 also

wrote, otherwise, T1 will abort.

The problem of making SI serializable has been extensively

studied in [3,6,11,12,13]. The key idea of solving this problem is

to avoid the write anomaly problem. The write anomaly is a

concurrent problem permitted by SI that can violate data integrity

and consistency. It happens when two or more concurrent

transactions when one transaction changes a value that the other

transaction reads. FCW allows this, since different items are

changed in each transaction. A detailed example of the write

anomaly is discussed in Section 3.4. The problem of how to

identify the transactions that causes the write anomaly is

addressed in [6]. This work uses Dependency Serialization

Graph (DSG) to identify transactions at runtime. A DSG

contains vertices representing transactions and three types of

dependency edge defined below:

RW-dependency edge (Vulnerable edge): There is a

RW-dependency from T1 to T2, if T1 reads a version of item X and

T2 produces a new immediate successor version X.

WW-dependency edge: There is a WW-dependency between

T1 and T2, if T1 produces a version of data item X and T2 produces

a new immediate successor version X. T1 and T2 can’t execute

concurrently.

WR-dependency edge: There is a WR-dependency from T1 to

T2, if T1 produces a version of data item X and commits, then later

T2 reads X. T1 and T2 cannot execute concurrently since T2 will

not be able to see the version T2 produced unless T1 commits

before T2 starts.

Figure 1 shows examples of these three dependency edges

described above.

T2 Read(X) Commit

T1 Write(X) Commit

WR-dependency

increasing time

T2 Write(X) Commit

T1 Write(X) Commit

WW-dependency

T2 Write(X) Commit

T1 Read(X) Commit

RW-dependency

Figure 1 WR/WW/RW-dependency

The write anomaly happens if the DSG of the program contains a

cycle and there are two vulnerable edges in a row as part of the

 3 / 10

cycle. Figure 2 shows an example. The main work of [6]

demonstrates that if a DSG is free of such cycles, then every

execution of the programs is serializable. In Section 4, we discuss

in detail how to detect and eliminate the write anomaly

T1 T3

T2

RW-dependency RW-dependency

any edge

Figure 2 DSG of a non-serializable execution schedule

3. ARCHITECTURE OVERVIEW

This section introduces HBase and ReTSO architecture and

describes the lock-free commit algorithm ReTSO uses for

concurrency control and its flaws.

3.1. HBase Overview

HBase [8] is an open-source implementation of Google’s

BigTable [2]. It is a distributed multi-dimensional map that maps

a row key, column key and a timestamp to an uninterpreted array

of bytes:

{row:string, column:string; time:int64}-> bytes

In HBase, applications store data into tables composed of rows

and columns. An HBase table contains multiple versions of the

same data indexed by timestamps. These timestamps can be

automatically generated by HBase or be explicitly assigned by

client applications.

HBase employs a master-slave topology. Tables are horizontally

partitioned into disjoint regions stored on slave machines called

RegionServer. HBase provides single-row-level exclusive locks,

but does not support multi-row atomicity.

3.2. ReTSO Architecture

ReTSO [9] is an open-source middleware project started at Yahoo!

that uses snapshot isolation and to add lock-free transactional

support on top of HBase.

ReTSO has two main components: Transaction Client Library

(TCL) and Transaction Status Oracle (TSO). Applications use

the TCL to request start timestamps from the TSO server,

optimistically writes to an HBase RegionServer, and finally send

commit requests to TSO. The TSO server is a single server which

monitors the modified rows by transactions and uses that to detect

write-write conflict. Additionally, The TSO server uses a

distributed logging service called BookKeeper [10] to keep a

write-ahead log and to recover the data in memory in case of

failure. Figure 3 shows the architecture of ReTSO.

Transaction
Client
Library

RegionServer

RegionServer

RegionServer

HBase

Transaction Status Oracle

BookKeeper

Application

committed
row version tc

r1 v6 13864368
r3 v4 14264369
… … …

 lastCommitted
row tc
r1 13864368
r6 14264374
… …

Figure 3 ReTSO architecture overview

To implements SI, the TSO server keeps two hash tables,

committed and lastCommited, in memory. The lastCommited

table contains the most recent commit timestamp of modified

rows. The committed table contains the commit timestamps of

completed transactions that created a new version of a particular

row.

3.3. Snapshot Isolation in ReTSO

A typical transaction with read and write operations in ReTSO

processes as described below:

Transaction Start. An application uses the TCL to request a

start timestamp from the TSO server when it initiates a

transaction. The TSO server assigns a unique timestamp to each

transaction. This start timestamp is also used as transaction ID.

Write. A write is performed optimistically by simply writing

the new data with a version equal to the transaction starting

timestamp to HBase RegionServer. Each transaction keeps

references to all the rows it modified in its own in-memory object

at the client side. Whenever the transaction aborts, it cleans up the

 4 / 10

new version of the row that it updated.

Read. In order to read a row from the database, the transaction

must obtain a portion of all the versions of that row that is

committed before its own start timestamp. Noted that a

transaction may read a version of a row created by a failed write

operation, it must verify the version by querying the TSO server.

A version is valid if the transaction that created it is committed. A

read operation fetches 10 (by default) latest versions before its

own start timestamp and verifies each version in descending

order starting from the most recent one until the TSO server

acknowledges that the transaction that created the version has

committed. If none are acknowledged, the TCL fetches more

versions from HBase. Algorithm 1 [1] shows how the TSO

server answers verification queries.

Algorithm 1 isCommitted (row r, timestamp version,

timetamp ts) -> {true, false}

1: if committed(r, version) == null

2: return false;

3: else

4: return committed(r, version) < ts

Transaction Commit. When a client commits a transaction,

the TCL sends a commit request along with all the row identifiers

the transaction modified to the TSO server. The TSO server

checks if each row modified follows FCW rule by looking up the

lastCommited table. This check guarantees that there are no

concurrent transactions updating the same data item. If the check

passes, it will update the commited table and send a commit

acknowledgement back to the client. Otherwise, it sends a failure

response to the client. Algorithm 2 [1] shows how the TSO

server processes commit request.

Algorithm 2 CommitRequest (modified row set R,

 timestamp ts) -> {commit, abort}

1: for each row r belongs to R

2: if lastCommited(r) > ts

3: return abort

4: end for

5: for each row r belongs to R

6: committed(r, ts) tc //assign a new commit timestamp

7: end for

8: return commit

Cleanup. After a transaction aborts, the TCL deletes all the

versions the transaction created for all of the rows that it

modified.

Client RegionServer1 RegionServer2 TSO

Start timestamp request

ts

Start transaction T1

Read(X)

X
Read a row

Version verfication request

Valid

Verify a verison

Write(Y, ts)

Write a row
Commit Request

Commit T1 Committed

Committed

 Figure 4 Sequence diagram of a successful commit.

Transacion T1 reads X and updates Y.

3.4. Write Anomaly in ReTSO

The current implementation of ReTSO does not take the write

anomaly into consideration. Data integrity can be corrupted if it

occurs. For example, suppose we have two values X and Y that

represent checking account and savings account of a certain

customer, with an invariant that X+Y>0. The bank’s business

logic may permit either account to be overdrawn, as long as the

sum of the account balances remains positive. Assume that

initially X0=50 and Y0=50. Transaction T1 with a start timestamp

ts1=1 reads X0 and Y0, subtracts 90 from X and creates a new

version X1=-40. Transaction T2 with a start timestamp ts2=2

concurrently reads X0 and Y0, subtracts 80 from Y and creates a

new version Y2=-30. T1 and T2 respectively send their commit

request to the TSO server. The TSO server accept both requests

because T1 and T2 update different data items X and Y respectively

and no write-write conflict will be detected in lastCommited table.

In this case each update transaction is safe by itself, but when

both occur, the database will violates the invariant X+Y>0. This

problem cannot be detected using information available in the

TSO server. Hence a new mechanism is needed to avoid the write

anomaly.

 5 / 10

4. MITIGATING WRITE ANOMALIES

We now describe a new commit algorithm that prevents the write

anomaly and guarantees serializable SI in a distributed DBMS.

Our new algorithm maintains additional transaction dependency

information at the TSO server and uses it to detect the distinctive

pattern of non-serializable executions. This section discusses in

detail how the write anomaly is detected and various design

issues in implementing the new algorithm.

4.1. Write Anomaly Detection

To avoid complicating the original architecture, detections will be

performed by the TSO server. The design should follow three

goals: (1) minimizing the process overhead; (2) ensuring

correctness; (3) maintaining the high scalability of the original

system. These three goals affect the various design choices

described below.

Conservative Detection vs Precise Detection. Many

approaches have been proposed to avoid the write anomaly in

RDBMSs. These approaches can be generally categorized into

two groups. The work in [11][13] keeps a complete DSG graph in

memory while the system is running, which leads to aborting

only the transactions that causes write anomalies. The other

techniques [3][12] tend to have less overhead and only need to

keep small amount of information on a central server, however,

they are often pessimistic and are afflicted with unnecessary

aborts. To achieve scalability and avoid high processing overhead,

we choose the conservative detection algorithm. Our algorithm

detects a potentially non-serializable execution whenever it finds

two consecutive RW-dependency edges in the DSG, where each

of the edges involves two concurrent transactions. Whenever such

a situation is detected, one of these transactions will be aborted.

To support this algorithm, the TSO server needs to maintain the

inConflict and outConflict references for each transaction T,

tracking the transactions that have RW-dependencies with T.

RW-Dependency Detection. The key to detecting the write

anomaly lies in detecting the RW-dependencies between

transactions. There are two situations when two transactions

could have an RW-dependency. One situation arises when a

transaction T1 reads a version of an item X, and the version it

reads is not the most recent version of X. In this case the writer,

transaction T2, of any more recent version of X was active after T1

started, and so there is an RW-dependency from T1 to T2. This

allows detecting RW-dependency edges for which the read

operation is interleaved after a write. To detect edges where a

read is performed before a new version is created by a concurrent

transaction, we need to somehow keep track of which row is read

by which transaction. When a commit request for transaction T1

comes, using this information, the TSO server checks whether

each of its updates conflicts an uncommitted read transaction T2.

In RDBMS, transaction dependency information can be retrieved

in lock table. Lacking of such data structure in HBase, we build a

similar in-memory hash table.

Memory Limitation. For highly concurrent applications with

many clients, it is difficult for a single TSO sever to keep all of

the information that is needed in memory. Thus, a timestamp

low-bound is set to avoid the TSO server’s memory from

overflowing. All of the in-memory lookup tables only monitor

transactions that start after than the bound. Any uncommitted

transaction with a start timestamp earlier than the bound is

aborted. An analysis of the system’s memory usage is discussed

in 5.4.

Victim Selection. When two transactions form an

RW-dependency cycle, either transaction could be aborted

without loss of correctness in order to break the cycle and ensure

serializability. Our new algorithm chooses to abort the transaction

that has not been committed to reduce the overhead of cascading

aborts. When both transactions are not committed, aborting the

younger of the two transactions is preferred, since it may increase

the proportion of complex transactions running to completion.

4.2. Implementation Details

Transaction Status Oracle
committed

row version tc
… … …

 lastCommitted
row tc
… …

conflicts
transaction inConflict outConflict

t1 t2 null
t3 null null
… … …

 readRecords
row transaction
r3 t3
r9 t8
… …

Figure 5 In-memory Tables of the TSO server

 6 / 10

Our algorithm needs the TSO to maintain two additional

information tables in its local memory. The conflict table tracks

RW-dependencies between transactions. The readRecords table

tracks rows read by the uncommitted transactions and the

transaction that reads it.

The following shows the modification we made to the original

Algorithm 1 and Algorithm 2 described in Section 3.3. The

pseudo-code of our new algorithm is listed in appendix.

Transaction Start. When a client requests to initiate a new

transaction, the TSO server assigns the transaction a start

timestamp and inserts a new entry into the conflict table.

Read. Transactions perform modified read operations by

reading versions both before and after its start timestamp. When a

transaction reads a version that is created after its own timestamp,

it forms an RW-dependency edge to the transaction that creates

the newer version. For versions that are earlier than the

transaction’s start timestamp, the client verifies each version in

descending order starting with the nearest one until one of them is

valid. The TSO server keeps every successful read in the

readRecords table until this transaction is committed.

Write. Write operations perform an optimistic write as

described in the original implementation.

Transaction Commit. When a client commits a transaction,

it sends a commit request to the TSO server. The TSO server

handles these requests using modified-CommitRequest method.

Other than checking for ww-conflicts in Algorithm 2, it checks

that for each row that transaction T1 updated whether it was read

by an uncommitted transaction T2 whose start timestamp is earlier

than T1’s commit timestamp. If such a row exists, a

RW-dependency from T2 to T1 is marked.

When a RW-dependency edge is detected between a reading

transaction and a writing transaction, the conflicts table is

populated with the proper tuple and the victim selection policy

discussed in Section 4.1 is applied.

5. PERFORMANCE EVALUATION

In this section, we present the correctness and cost evaluations of

our new algorithm. For the correctness evaluation, the goal is to

validate that the new transaction commit algorithm guarantees

serializable transactions schedules correctly. For the cost

evaluation, we present a comparative evaluation between the new

commit algorithm and the original one. Lastly, we explore the

memory usage in the TSO server.

Our evaluation is performed on a dedicated HBase cluster of six

nodes, each running on a machine with Linux 2.6.32, 6 GB of

RAM, and a 4-core 3.0GHz AMD Phenom II CPU. The TSO

server is deployed on another dedicated machine with the same

hardware configuration. The benchmark driver is written in Java

and runs on eight separate client machines, each equipped with

Linux 2.6.32, 4 GB of RAM and a dual-core 2.0GHz AMD

Athlon CPU. We emulate a varying number of concurrent clients

using multithreading. We denote the number of concurrent client

threads as multiprogramming level (MPL),

5.1. SmallBank Benchmark Overview

The SmallBank benchmark is a workload that is specifically

designed to illustrate the write anomaly permitted by SI [7].

SmallBank is a small banking database consisting of three tables:

Account (Name, CustomerID), Saving (CustomerID, Balance),

Checking (CustomerID, Balance). Each tuple in Account table

represents a customer. The primary key of Account is Name.

CustomerID is a primary key for both Saving and Checking

tables.

Account

PK Name

 CustomerID

Saving

PK CustomerID

 Balance

Checking

PK CusomerID

 Balance

Figure 6 Tables of the SmallBank Benchmark

The SmallBank benchmark executes five different transaction

programs.

Balance, or Bal(N), looks up Account to get the CustomerID

value for N, and then returns the sum of savings and checking

balances for that CustomerID.

DepositChecking, or DC(N, V), looks up the Account table to

get CustomerID corresponding to the name N and increase the

checking balance by V for that CustomerID.

TransactSaving, or TS(N, V), looks up the Account table to get

 7 / 10

CustomerID corresponding to the name N and increases the

savings balance by V for that customer.

Amalgamate, or Amg(N1, N2), reads the balances for both

accounts of customer N1, then sets both to zero, and finally

increases the checking balance for N2 by the sum of N1’s

previous balances.

WriteCheck, or WC(N, V), looks up Account to get the

CustomerID value for N, evaluates the sum of saving and

checking balances for that CustomerID. If the sum is less than V,

it decreases the checking balance by V+1 (reflecting a penalty of

1 for overdrawing), otherwise it decreases the checking balance

by V.

The client threads execute transactions one at a time. The

transaction type is chosen uniformly at random from the five

transactions. The database is populated with 18,000 randomly

generated customers and their checking and saving accounts. The

workload is skewed so that some customers are accessed more

often than others. We define a certain number of customers as

“hotspot”. 90% of all transactions deal with a customer who is

chosen uniformly from 1000 customers. The other 10% of

transactions access customers from outside the hotspot. In the

normal contention experiments the hotspot has 1,000 customers,

but in the high contention experiments, the hotspot is made to

have 10 customers only. Each experiment is repeated three times

and the average of results is calculated. Before each experiment,

we start the HBase and ReTSO servers and execute a 30-second

warm-up, allowing the clients to reach full MPL. At the end of

each experiment, we bring down the HBase and ReTSO server

after a 30-second cold down.

5.2. Correctness

The SmallBank benchmark requires that the total balance of the

two account of the same customer should be non-negative. Thus,

if a balance inquiry transaction reads a negative total balance, it

indicates that a write anomaly has occurred. Additionally, at the

end of each benchmark run, the total balance of each joint

account is checked to ensure correctness.

We conduct the experiments using 16 client threads. Each

experiment runs the SmallBank benchmark for 30 minutes.

Figure 9 shows that out of the total number of aborts,

approximately 11% are due to the write anomaly problem. The

accumulated number of invalid balance queries over time and the

total number of corrupted customer accounts is given in Figure 7

and Figure 8. The results show that applying our new commit

algorithm avoids every non-serializable execution permitted in

ReTSO.

Figure 7 Accumulated number of negative balance queries

over time.

Figure 8 Total number of invalid accounts.

Figure 9 Aborts distribution in three experiments

5.3. Cost of Serializability

Another important aspect to evaluate is the overhead of

supporting serializability. We run the SmallBank benchmark with

MPL from 8 to 256 under both normal contention and high

contention configurations. In the normal cases, the cost of

 8 / 10

ensuring serializability shown in Figure 10 is approximately 23%

of the original committed transactions per second (TPS). In the

high contention experiments, the size of the hotspot region is

changed from 1000 customers to only 10 customers. The

increased contention from the small hotspot reduces the overall

throughput. TPS shows a significant drop in Figure 11, due to an

increasing number of conflicts between transactions.

The results in Figure 10 and Figure 11 show a linear growth in

throughput over number of client treads when MPL is below 50.

When MPL is over 50, our client machine is saturated because the

overhead of treads switching on its two CPU cores.

Figure 10 Throughput over MPL

Figure 11Throughput over MPL under high contention

5.4. Memory Usage

Figure 12 Memory usage in the TSO server

Memory usage in the TSO server is evaluated respectively with

MPL from 8 to 256. Figure 12 shows a steady growth of memory

use over the number of client threads. This is mainly due to the

growing size of the four in-memory hash tables used to maintain

the additional information needed by our algorithm. The TSO

server running on server with 6GB RAM is predicted to exhaust

its memory on 500 client processes if we assume a linear growth

of memory use over the number of clients according to Figure 12

Figure 13 shows the relative size of the four hash tables TSO has

in memory. A rapid growth in percentage is shown for the

committed table due to the growing number of committed

transactions the TSO server has to keep track of. This table, used

for verifying read operations and guaranteeing correctness, is the

main usage of the TSO server’s memory.

Figure 13 Relative Table Size

6. FUTURE WORK

In the future, we hope to improve the precision of our write

anomaly detection algorithm by evaluating and reducing the rate

of false positives. We have not yet carried out a thorough analysis

of the impact of unnecessary aborts, but we expect that the

precise detection would require a prohibitive amount of

additional memory and CPU time. Additionally, we are extending

our approach to other NoSQL large-scale data services.

7. CONCLUSION

This report describes a new transaction commit protocol that

ensures serializable SI in distributed database management

systems. The new mechanism makes use of additional

information kept at a centralized coordinator to detect and prevent

non-serializable executions. We demonstrate the correctness and

scalability of our new algorithm by experiments. The evaluation

shows that with the cost of only less than 23% throughput loss,

we achieve serializability in a distributed NoSQL DBMS.

 9 / 10

REFERENCES

[1] F. Junqueira, B. Reed, and M. Yabandeh. Lock-free

Transactional Support for Large-scale Storage Systems. In

Hot-Dep, 2011.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.

Gruber. Bigtable: A Distributed Storage System for

Structured Data. In OSDI, pages 205–218, 2006.

[3] M.J. Cahill, U. Roehm, A.D. Fekete. Serializable Isolation

for Snapshot Databases. SIGMOD 2008: 729-738

[4] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, ,

and P. O’Neil. 1995. A critique of ANSI SQL isolation levels.

In SIGMOD ’95: Proceedings of the 1995 ACM SIGMOD

international conference on Management of data, pages

1–10. ACM Press, June.

[5] Kapali P. Eswaran, Jim Gray, Raymond A. Lorie, and Irving

L. Traiger. 1976. The notions of consistency and predicate

locks in a database system. Communications of the ACM,

19(11):624–633. Philip A. Bernstein and Nathan Goodman.

1981. Concurrency control in distributed database systems.

ACM Comput. Surv., 13(2):185–221.

[6] Alan Fekete. 1999. Serializability and snapshot isolation. In

Proceedings of Australian Database Conference, pages

201 C̈210. Australian Computer Society, January.

[7] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil,

Patrick O’Neil, and Dennis Shasha. 2005. Making snapshot

isolation serializable. ACM Transactions on Database

Systems (TODS), 30(2):492–528.

[8] Cloudera http://hbase.apache.org

[9] Yahoo! https://github.com/dgomezferro/omid/wiki

[10] Cloudera http://zookeeper.apache.org/bookkeeper/

[11] S. Revilak, P. O’Neil, and E. O’Neil. Precisely Serializable

Snapshot Isolation (PSSI). In ICDE’11, pages 482 –493,

april 2011.

[12] S. Jorwekar, A. Fekete, K. Ramamritham, and S. Sudarshan.

Automating the detection of snapshot isolation anomalies.

In VLDB, pages 1263–1274, 2007.

[13] M. Bornea, O. Hodson, S. Elnikety, and A. Fekete.

One-copy serializability with snapshot isolation under the

hood. In ICDE’11, pages 625 –636, april 2011.

[14] M. L. Liu, D. Agrawal, and A. El Abbadi. The performance

of two phase commit protocols in the presence of site

failures. Distrib. Parallel Databases, 6:157–182, April

1998.

[15] Mohammad Alomari, Michael J. Cahill, Alan Fekete, and

Uwe Röhm. 2008a. The cost of serializability on platforms

that use snapshot isolation. In ICDE ’08: Proceedings of

the 24th International Conference on Data Engineering,

pages 576–585, Cancún, México, April 7-12. IEEE.

[16] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C.

Maltzahn. Ceph: A scalable, high-performance distributed

file system. In Proc. OSDI, 2006.

APPENDIX

Serializable SI Commit Algorithms

The TSO server processes transaction initiation requests from

clients

modified-start(transaction T)

1: ts new timestamp

2: insert an empty entry for T in the conflict table

3: send start time stamp ts to client

Read operation performed by transaction T1

modified-read(row r, version set V, timestamp ts1)

1: for each version v belongs to V

2: Let ts2 be start timestamp of transaction T2 that created v.

3: if ts2> ts1

4: markConflict(T2,T1)

5: else if modified-isCommitted(r,v,ts1)

6: return v;

7: end for

http://hbase.apache.org/
https://github.com/dgomezferro/omid/wiki
http://zookeeper.apache.org/bookkeeper/

 10 / 10

8: fetch more versions

9: go to line 1

The TSO server verifies the version that clients read.

modified-isCommitted (row r, timestamp version, timetamp ts)

-> {true, false}

1: if committed(r, version) == null

2: return false;

3: else

4: if committed(r, version) < ts

5: insert (r, version) into the readRecords table

6: return true

7: else

8: return false

The TSO server processes commit requests from clients for

transaction T1.

modified-CommitRequest (modified row set R, timestamp ts1) ->

{commit, abort}

1: for each row r belongs to R

2: if lastCommited(r) > ts1

3: return abort

4: end for

5:

6: for each row r belongs to R

7: committed(r, ts1) tc1 //assign a new commit timestamp

8: end for

9: for each row r belongs to R

10: if readRecords(r)!=null

11: let T2 be the uncommitted transaction that read r

12: if ts2<tc1

13: markConflict(T2,T1)

14: end for

15: return commit

When a RW-dependency is identified, the TSO server records it

in the conflict table and performs proper aborts.

markConflict(Transaction Reader, Transaction Writer)

1: if Reader has committed

AND conflicts(Reader).inConflict!=null

2 abort(Writer)

3 return

4: if Writer has committed

AND conflicts(Writer).outConflicts!=null

5: abort(Reader)

6: return

7: if conflicts(Writer).outConflict!=null

OR conflicts(Reader).inConflicts!=null

8: abort the younger transaction of Reader and Writer

9: return

10: conflicts(Reader).outConflicttrue

11: conflicts(Writer).inConflicttrue;

	Serializable Snapshot Isolation in Shared-Nothing, Distributed Database Management Systems
	ABSTRACT
	1. INTRODUCTION
	2. SNAPSHOT ISOLATION
	3. ARCHITECTURE OVERVIEW
	1.
	2.
	3.
	3.1. HBase Overview
	3.2. ReTSO Architecture
	3.3. Snapshot Isolation in ReTSO
	3.4. Write Anomaly in ReTSO

	4. MITIGATING WRITE ANOMALIES
	1.
	2.
	3.
	4.
	4.
	5.
	4.1. Write Anomaly Detection
	4.2. Implementation Details

	5. PERFORMANCE EVALUATION
	1.
	2.
	3.
	4.
	5.
	5.1. SmallBank Benchmark Overview
	5.2. Correctness
	5.3. Cost of Serializability
	5.4. Memory Usage

	6. FUTURE WORK
	7. CONCLUSION
	REFERENCES
	APPENDIX
	Serializable SI Commit Algorithms

