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Abstract

Thisthesis presents a computational framework and new agorithmsfor creating geometric models
and images of physical objects. Our framework combines magnetic resonance imaging (MRI)
research with image processing and volume visuaization. One focus is feedback of requirements
from later stages of the framework to earlier ones.

Withintheframework we measure physical objectsyielding vector-valued MRI volumedatasets.
We process these datasets to identify different materials, and from the classified data we create
images and geometric models. New agorithms developed within the framework include a goal-
based technique for choosing MRI collection protocols and parameters and a family of Bayesian
ti ssue-classification methods.

The goal-based data-collection technique chooses MRI protocols and parameters subject to
specific goals for the collected data Our goals are to make identification of different tissues
possible with data collected in the shortest possible time. Our method compares results across
different collection protocols, and is fast enough to use for steering the data-collection process.

Our new tissue-classification methods operate on small regions within a volume dataset, not
directly on the sample points. We term these regions voxels and assume that each can contain a
mixture of materials. The results of the classification step are tailored to make extraction of surface
boundaries between solid object parts more accurate.

Another new algorithm directly renders deformed volume data produced, for example, by
simulating the movement of aflexible body.

The computational framework for building geometric models allows computer graphics users
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to more easily create models with internal structure and with a high level of detail. Applications
exist in avariety of fields including computer graphics modeling, biologica modeling, anatomical
studies, medical diagnosis, CAD/CAM, robotics, and computer animation. We demonstrate the
utility of the computational framework with a set of computer graphics images and models created

from data.
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Chapter 1

| ntroduction

1.1 Motivation

Computer graphics isa broad field. Its practitioners gather within it any domain in which images
are generated or enhanced by a computer. One thrust within computer graphics is the creation of
models and images of objects such as plants or animalsto further our understanding of them. The
same types of models and images a so have applicationsin entertainment and education.

Our work explores some new techniques for studying anatomy, development, and behavior
through this modeling and rendering process. Given alocust, ahuman hand, or afrog embryo, how
can we visualize and understand it? What new tools are needed to answer questions about it?

We present a computational framework for attacking some of the difficulties in making models
and images. Our framework is centered around measuring objects, identifying different regions
within the objects, and creating images and models using information about the regions and mea-
surements.

The framework is not a one-way pipeline. Instead, each stage requires input with certain
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characteristics; these required characteristics impact the output of earlier stages. The feedback
assures that the output from each stage meets the requirements for input to the next.
In this chapter we present our computational framework, discuss some of the novel techniques

that we have devel oped within the framework, and give an overview of the remaining chapters.

1.2 Moded-Building Framework

Our framework consists of three main stages, illustrated in Figure 1.1. In the first stage, data
collection and processing, rea-world objects are measured and the resulting sampled volume data
processed and stored for later stages. We describe some of the problems and our approaches to
solving them in Section 1.2.1 and in Chapter 2.

The second stage of the framework, classification, identifies regions containing different mate-
rials within the objectswe have measured. The sampled volume dataisused asinput. Section 1.2.2
and Chapter 3 describe our Bayesian methodology for generating classification agorithms, and
Chapters 4 and 5 present three new algorithms.

Thethird stage of the framework, model building and visualization, generates model's, images,
and animations of our objects. We outline some of the challenges and show results of applying our

techniques to classified MRI datain Section 1.2.3 and in Chapters 6 and 7.

1.2.1 DataCoallection

In thefirst stage of our computational framework we measure the physical object we wish to mode.
The datawe collect must distinguish different material s sufficiently for our classification and model -
extraction processesto work. We have devel oped techniquesthat help usto collect datathat satisfies

our imaging goalsin aminima amount of time.

Why MRI? We have chosen to use magnetic resonance imaging (MRI) for a number of reasons.

First, MRI measures information about both the inside and the outside of an object. The resulting
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Real World Objects

Data Collection
A ¢

Sampled Volume Data (MR, CT)

Classification
Y

Identified Materials

Model Volume Rendering/
Building Visualization

Geometric/Dynamic Models Images/Animation

Figure 1.1: Thisfigure showsthe computational framework that we usefor creating static and dynamic geometric models
from MRI data. O

volume data identify internal structure, an important factor in the behavior of dynamic models.
Second, MRI measures at least three independent parameters of each material, and so has the
potential to distinguish moredifferent material sthan techniquesthat measure only asingle parameter.
Third, itisnot invasive, sowecan measureliving plantsand animal swithout damaging them. Fourth,
althoughimagingtimeisexpensive, MRI isaccessible at most | arge hospital sand at imaging centers.

Other modalities have been used for creating models. Laser range-scanning is the most
widespread [Turk and Levoy, 1994] primarily due to its low cost and high level of detail. It is,
however, limited to line-of-sight surface measurements, which are sufficient for many static com-
puter graphics applications, but not sufficient for applications requiring internal structure or for

dynamic modelswhere an initialy invisible portion of the surface may become visible.
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Computed tomography (CT) data have aso been used for similar purposes [Drebin et d., 1988].
CT can produce higher-resolution data than MRI and measures internal structure, but suffers from
two drawbacks. First, it uses ionizing x-radiation, which damages living tissues; and second, its
measurements depend only on a single material parameter, and so cannot differentiate tissues as

well asMRI.

Limitations. MRI datasets have a number of limitations. There are many different MRI methods
or protocolsfor collecting data, each with a set of parameters that influence how different materias
appear intheresultingimages. Choosing aprotocol and parametersfrom thispanoply isaformidable
task, often requiring years of experience and frequently only moderately successful. Further
complicating the problem, MRI collectionsare time-limited by the physicsof the spinning hydrogen
nuclei; datasets with a large enough signal-to-noise ratio or contrast-to-noise ratio often require a
prohibitive amount of timeto collect.

There are also many distortions that can appear in MRI data. Broadly, the distortions can be
categorized as geometry or intensity related. We avoid some of the distortions by constraining the
data-collection process and reduce others through the parameter optimization process. In a post-
collection step we reduce even more through image-processing techniques. We defer attending to
some of the distortionsuntil the tissue-classification stage where we diminish the artifacts through
new classification algorithms.

Cost and accessibility are additiona issues. While MRI machines exist in most large hospitas
and in imaging centers in many large cities, they are expensive to use, currently costing around

$400-1000/hour, and often difficult to access.

MRI Data Collection Parameter Setting. Aswe describein more detail in Section 2.1.2, others
have attacked the M RI parameter-setting problem with techniquesthat opti mizethe contrast between
two specific materias or that find closed-form solutions for a specific protocol. Some numerical

techniques have also been used to optimize the contrast-to-noise ratio for a particular collection
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algorithm.

In Chapter 2 wedirectly addressthe parameter-setting and coll ection-time problemsby codifying
the requirements of the classification, model-building, and visuaization algorithms; the complex
constraints of the MRI machines; and the desire to reduce collection time. From the requirements
we construct a mathematical optimization problem that we solve numerically to find collection

parameters that collect data satisfying our requirementsin the shortest possibletime.

1.2.2 Tissue Classification

The second stage in our computational framework involves classifying or segmenting our sampled
datasets to identify regions of different materials within the datasets. The main motivation for our
classification work is to make computer graphics models and images using volume measurements
of physical objects. Identifying different materialsis a key step in the process, particularly when
different materials have different behaviors or appearances. Computer graphicsapplicationsinclude
volume-renderedimages|Levoy, 1988], surface model s[Lorensen and Cline, 1987], and volumemodels
created from the data.

Applications of the models and images include surgical planning and assistance, conventional
computer animation, anatomical studies, and predictive modeling of complex biological shapes and
behavior. Some aspects of our classification techniques could aso be applied to medical diagnosis.
With further development, the concepts may also apply to computer vision problemsor to extracting
mattes for digital optical effects.

Sources of sampled volume data are becoming more numerous and accessible. In addition
to MRI, they include Computed Tomography (CT), as well as astrophysical, meteorological, and
geophysical measurements. The computational sciences frequently produce sampled output, e.g.,
the results of computational fluid dynamics (CFD) and finite element method (FEM) simulations.
We have focused on classifying MRI data, but our techniques apply to other modalities as well.

We describe related classification work in Section 3.1.1. In some of thiswork classification is

implemented via interactively selected mappings from data values to colors and opacities, which
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are then rendered, or via interactively chosen threshold values for distinguishing regions. Many
more rigorous classification algorithms have a so been devel oped, but are of limited applicability to

classifying sampled MRI datafor extracting models.

Bayesian Framework. We have developed a methodology (see Chapter 3) for constructing a
Bayesian classification algorithm from a set of assumptions about the underlying data. Our ago-
rithms start with the premise that the sasmpled datasets satisfy the Nyquist sampling theorem, which
allows us to reconstruct a continuous function p(X) over the entire dataset [Oppenheim et al., 1983].
We calculate histograms of p(X) over small regions of the dataset and classify those histograms by

fitting histogram basi s functions constructed from the set of assumptions.

Classification Algorithms. Using the Bayesian framework we have constructed three different
classification algorithms, described in more detail in Chapters 4 and 5. The first algorithm models
each voxel as a linear combination of pure materials and mixtures of two materials. The second
algorithm model s each voxe as either entirely composed of a single pure material, or composed of
amixture between two material s with a boundary between those two materials. Thethird algorithm
is substantially similar to the second, but alows the expected value, or signature, of each material
to vary over a dataset, a common characteristic of MRI data. These techniques classify MRI data
better than previously available techniques because they use amore accurate model of the collected
data. They are also tailored to produce accurate results near boundaries between materials where

extracted model detailsare most visible.

1.2.3 Model Building and Visualization

Thefinal stage in our computational framework involves extracting geometric and dynamic models
and visualizing the results. We describe this work in Chapters 6 and 7. We have primarily
experimented with applying existing techniques to the data that we have collected and classified.

Using these techniques we have created a series of models and images of inanimate and animate
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objects measured with MRI. These examples illustrate our taxonomy of model types and show the
utility of classified MRI data as a method for creating models.

Many of themodel sthat we have created are polygonal isosurfaces of sampled functions created
by classifying collected datasets. In addition to creating static models of these regions of uniform
materials, we have used the regions to define behaviors and cal culated rudimentary simulations of
the motion of these models. The behaviors are implemented as time-varying deformations. The
classified datasets a'so comprise amodd of the underlying object; we can directly visualize them,
and, in some cases, directly simulate the behavior of the model.

Our visualizations take two basic forms, surface rendering and volume rendering. Most tradi-
tional computer graphics imagery is rendered as surfaces, although in the last decade volume ren-
dering has emerged as a useful adjunct to the moretraditional techniques. Unlike surface-rendering
methods, volume rendering produces images that can show internal structure. The images of solid
objects appear to consist of volumes of transparent or semi-transparent material .

We render static and moving images using both techniques. We have developed an extension to
volume-rendering algorithmsthat are based on ray tracing. Our extension directly renders deformed

volume data.

1.3 Overview

We present the computational framework shown in Figure 1.1 from top to bottom. Chapter 2
describes the data collection stage. Chapter 3 explains the Bayesian methodology for creating
classification agorithms, with the new algorithms described in Chapters 4 and 5. The third stage,

model extraction and visuaization, isillustrated in Chapters 6 and 7.
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Data Collection

The following part of the thesis describes goal-based data collection, a tech-
nigue for choosing a specific MRI collection technique and specific collection
parameters from the myriad of possibilities. The choiceis guided by a series of

goalsfor the resulting volume data and the collection process.



Chapter 2

Goal-Based Data Collection

AsshowninFigure2.1, thefirst computational stepinour framework iscollecting datathat measures
an object that we wish to model. We have chosen to use Magnetic Resonance Imaging (MRI) as our
measurement technique for reasons explained in Chapter 1. There are severa challenges, however,
that MRI presentsin the context of creating models.

Two of the main challenges are choosing among the many collection techniques, or protocols,
and selecting values for the collection parameters that control each protocol. Our approach is
to define imaging goals for the collection process, translate them into a constrained optimization
problem, and find the protocol and collection parameters that best satisfy the imaging goals.

The novel contributions of our work are in our goal-based framework, in the choice of imaging
goals for the optimization procedure, in the use of the optimization step to steer the acquisition
process, and in our two-level optimization process. The framework gives amethodol ogy for adding
new imaging goalsand new collection techniquesto the set that we have implemented. Theimaging
goa sweimplemented are motivated by our desire to distinguish adjacent materia s sufficiently well

to be able to produce geometric models from the data, but many of the objectives are generally
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Real World Objects

Data Collection

A 4

Sampled Volume Data (MR, CT)

Classification
\

Identified Materials

Model Volume Rendering/
Building Visualization

Geometric/Dynamic Models Images/Animation

Figure 2.1: Our computational framework for creating geometric models, as shown earlier in Figure 1.1. In Chapter 2 we
describe our goal-based data-collection process, emphasized in the diagram. Our new techniques help select an optimal
collection technique and set of collection parameters given a set of imaging goals for the resulting volume data. O
applicable to imaging applications. These imaging goals differ from other work in that they do not
find collection parameters yielding the most contrast or highest contrast-to-noise ratio (CNR), but
rather find parameters yielding sufficient contrast in the least amount of time. Also, any number
of materias can be specified by a user from a low-resolution dataset, and optimal parameters are
generated taking into account inherent machine limitationsand desired collection parameters such
as resolution. Finally, because units of the function we optimize are consistent from protocol to
protocol, we can choose the most appropriate technique or combination of techniques. We can even
choose between collections that produce scalar or vector-valued data.
We validate our technique with results using simulated as well asreal MRI data.

The chapter is organized as follows: Section 2.1.1 discusses the collection of MRI data and
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motivatesthe need for goal-based collection techniques. Section 2.1.2 describes related work inthe
area and compares it to our work. We define terms in Section 2.1.3. In Section 2.2 we describe
our imaging goals and give a conceptual description of the optimization process. A mathematical

description follows in Section 2.3 with results, discussion, and conclusionsin Sections 2.4-2.6.

2.1 Introduction

211 Background and Motivation

Collecting good MRI data is difficult because imaging systems are very sensitive to the many
parameters of the various collection technigues, to the choice of technique, to subtle differencesin
the materias that are being imaged, and to the fine tuning of the machine being used. Many parts
of the process are also inherently analog and difficult to caibrate.

MRI collection protocolsare defined by a set of precisely timed el ectro-magnetic pul ses applied
toan abject. A “pulseprogram” defines and controlstheexact timing. Figure 2.2 showsan example.
In these programs many operations occur simultaneously: different magnetic gradients are turned
on and off, and radio frequency energy is transmitted into the subject and is measured as it is
re-radiated. The timing of these operations changes the resulting images that are collected, and it is
often difficult to choose appropriate parameter valuesto collect datathat have the properties needed
for agiven application.

In most cases finding an appropriate set of parameters is a trial-and-error process. An exper-
imenter typicaly collects datasets varying the parameters based on prior experience or published
results of other experiments until the images appear reasonably good.

Wehaveimproved on thistrial-and-error process by mathematically formulating aset of imaging

goals and using constrained optimization to find an optimal set of collection parameters.
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Collection Parameters, P, units

No, N1, No samples none  number of samplesin each direction—Ng is of-
ten called the read direction; Ni, the phase-
encode direction; and Ny, the dlice direction

FOVo, field of view [m] size of imaged region in each of the above

FOvV4, directions

FOV,

H dicethickness  [m]

Nz averages none  number of acquisitions averaged together in
each sample

TR recycle time [s] time between acquisitions of data for spinsto
realign with the static magnetic field

Te echo time [ timewithinan acquisitionfor spinsto de-phase
dueto T, effects

T inversion time [S] time within an acquisition for spins to decay
dueto T, effects

o tip angle degree angle spins are tipped away from the static
magnetic field

DW dwell time [s] timeto collect a single data point

12

Table 2.1: The collection parameters in this table control collection protocols, describing the volume to be imaged, the
number of sampleswithin that volume, and the timing of the pulsesthat influence contrast between materials. O

2.1.2 Reated Work

Many efforts to find effective MRI collection parameters have centered around finding optimal

contrast between two specific materials, e.g., white matter and grey matter in the human brain

[Dufour et d., 1993]. Other approaches have derived closed-form solutions for optimizing contrast,

contrast-to-noiseratio, or sensitivity [Mitchell etal., 1984] [Fox and Henson, 1986] [Pel ¢, 1993] [Hendrick

eta., 1984]. Numerical methodshave al so been employed successfully, mast commonly to optimize

the contrast-to-noiseratio, sometimesfor aspecific collectiontime[Dreher and Bornert, 1988] [ Dufour

et al., 1993] [Epstein et a., 1994].

2.1.3 Terminology

We define terms here that we will use throughout the chapter.

Animaging goal describes a desired property of collected data or of the collection process. An

imaging goa can also be a constraint on a collection parameter or among severa parameters. The
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Figure 2.2: Pulse programs describe how various components of an MRl machine all execute in paralel. In this
prototypical diagram of the spin-echo protocol, each horizontal plot representsthe activity of one portion of the machine
astime movesto theright. Asthe pulsesexecute they perturb spinning hydrogen nuclei, changetheir phase, and measure
information about them. There are many parameters that control these programs; some control the spatial region to be
imaged (slice location and thickness, and field of view, FOV), the number of of samples over that region (No and Ny),
and the timing of the pulses that influence contrast between materials (echo time, Tg, and recycletime, Tg). Aslong as
certain relationships between parameters are maintained, other parameters, such as sweep width and encodetime, can be
varied to avoid machine settings that are not possible. Choosing appropriate valuesis a difficult process. The diagram
shows pulsesto acquireasingle 1-D array of data; for a2-D image or 3-D volume the acquisitionis repeated. O

constraint may encode a hardware limitation or some relationship among parameters.

A protocoal isan MRI collection technique. Each protocol isimplemented by a pulse program
with parameters that control the location and resolution of the data collected, as well as the timing
of the pulses that influence contrast and noise within the collected data. The set of parameters is

collectively known as collection parameters, or Pe.
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Material Parameters, P, units

N(tH) spin density [m~3] number of hydrogen nuclei per volume

T longitudina re- [9] time constant for perturbed spins to return to
laxation time alignment with the static magnetic field

T transverserdax- [ time constant for a collection of spinsto go out
ationtime of phase

Table 2.2: Thethree material parameters describe how aregion of uniform material will behave under the influence of an
MRI collection protocol. The parameters are based on a model of the behavior known as the Bloch equations [Bloch,
1948]. O

Spin-echo is an example of a protocol with the contrast-related parameters Tr, Tg, and «.
Table 2.1 lists collection parameters; Figure 2.2 shows a prototypica diagram of a spin-echo pulse
program.

A machineis an instance of an MRI machine. Because different MRI machines have hardware
with different capabilities, imaging goas are sometimes implemented differently for different
machines.

Table 2.2 lists material parameters for a modd of the MRI process. Materia parameters,
sometimes referred to as Py, describe how a region of homogeneous material behaves as a pulse
program collects data. The parameters include the density of hydrogen nuclei, N(*H), and two
exponential time-constants, T, and Ty, that describe the behavior of the nuclei. The behavior
is based on the Bloch equations [Bloch, 1948], a set of coupled differential equations describing
the behavior of spinning nuclei in time-dependent magnetic fields. Each materia has its own
material parameters. The signature for a material is the expected value and standard deviation of
measurements of that material for agiven set of protocol parameters.

In many of our results we list the mean, x, and standard deviation, o, of a normal distribution

with the notation“y + o

2.2 Conceptual Approach to Goal-Based Data Collection

Our approach builds on the related numerical optimization work (see Section 2.1.2), but uses a

more general goa -based approach and a set of imaging goalsthat are applicable to more situations.
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Figure 2.3: The outer-level optimization process in the data collection parameter optimization process. The process
begins at the left with aguessat collection parameters. Datasets are collected with those parameters, and a set of imaging
goals specified, some through interaction with the data. The algorithm then iteratively chooses parameters that satisfy the
goals and collects new data. Figure 2.4 details the inner-level optimization process of choosing new parameters. O

New imaging goals and protocols can be added to our framework in an object-oriented manner, and
optimal solutionsfor each protocol can be compared to optimal solutionsfor other protocols.
In this section wefirst describe the framework for our optimization process and then present the

set of imaging goasimplied by our modeling application.

2.2.1 Optimization Framework

The goa-based framework defines an objective function, E(p), of the collection parameters and
a set of constraints. Through evaluations of E(p) we can computationaly find an optimal set of
parameters.

Idedlly, the constrained optimization process would collect a dataset each time it wanted to
evaluate a new set of parameters. Unfortunately, the data-collection process is quite slow, and
the constrained optimization process evaluates E(p) for many sets of parameters. To address this
problem we have developed a two-level optimization process. At the outer level, datasets are

collected, but at the inner level the data-collection processis simulated. Figure 2.3 showsthe outer
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Figure 2.4: The data collection optimization “inner loop.” This processtakes a set of imaging goals and a set of images
and calculates collection parameters that satisfy the goals. A model for each material isfirst fit to the set of images, and
then a constrained optimizer iteratively findsthe optimal set of protocol parameters based on the material parameters. O

level. The “Choose New Parameters’ step contains the inner level, which is shown in more detail
in Figure 2.4.

In collecting optimized data we perform the steps shown in Figure 2.3. First, we choose an
initial range of collection parameters for the optimization process to use as a starting point. We
collect several datasets with these parameter settings, and then choose geometric locations within

theimages that represent different tissues. We then specify a set of imaging goals, e.g.,
o differentiate chosen materials
e acquire data at a particular resolution and size
¢ minimize collection time
¢ do not violate hardware limitations of the machine

Asshown in Figure 2.4 the constrained optimizer finds an optimal set of parameters based on a
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model of each material that we identified in the collected data. New datasets are collected near that
optimal point. Frequently they satisfy the imaging goals, but when they do not, the outer level of

the optimization process is repeated and more new data are collected.

2.2.2 Imaging Goals

We use severa different types of imaging goas in our optimization process. Some are related to
the ultimate use of the collected data, some are inferred from constraints of the collection protocol

or machine, and some are practical.

Goal: Good Tissue Discrimination

Our first imaging goal isto be ableto unambiguously identify different tissueswithin animage. The
specific requirements from this goal arise from the tissue-classification a gorithms that we present
in Chapters 3-5.

Thereare two partsto the goal: thefirstisrelated to the contrast-to-noiseratio (CNR) [Kana and
Wehrli, 1986]. We assume that measurements of a particular materia will be normally distributed.
We can cal cul ate the mean and standard deviation of the normal distribution for each material from
the interactively selected points. From the selected points, the CNR, which is the ratio of the
difference of their meansto the average of their standard deviations, can be calculated for each pair
of materials. For materials with a CNR of less than one, the normal distributions overlap and are
difficult to distinguish. For larger CNR values the distributions overlap less and become easier to
identify, as shownin Figure 2.5. Thedegree of overlap that isacceptableis determined by our tissue
segmentation method.

The second part of the goal is to collect data at a particular resolution. As we formalize the
imaging goalsin a Section 2.3, we incorporate resolution. By fixing the desired resolution, we find

collection parameters that achieve sufficient contrast to identify materials at that resol ution.
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Figure 2.5: On the left two summed normal distributions are difficult to identify, and data values do not clearly lie under
either, making them difficult to assign to a material. On the right the distributions are clearly separated. Note that this
separation can be achieved either by moving the centers or by narrowing the widths of the distributions. Figures 2.9
and 2.10 show examples of datathat illustrate this effect. O

Goal: Observe Machine and Protocol Limitations

We also wish to avoid violating assumptions implied by an imaging protocol or by limitations of
our collection hardware. For example, agiven implementation of a spin-echo imaging protocol will
have amaximum valuefor the parameter Tg that is dependent on thevaluefor Tr. Similarly, agiven
implementation on a particular machine will have a minimum value for Tg. The minimum may be

afunction of other parameters, or may be an absolute value.

Goal: Minimize Collection Time

We wish to achieve the imaging goal's above with the smallest amount of collection time. Imaging
time is expensive, so reducing it saves money. Shorter imaging times also tend to reduce the
likelihood of mation artifacts from living subjects because they do not need to remain in the

machine and motionlessfor as long.

2.3 Mathematical Approach

In thissection we mathematically formul ate our imaging goalsand the MRl model, describe how we

construct an optimization problem from them, and give some details about the numerical solution
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technique that we use.

Asshownin Figures 2.3 and 2.4, our algorithm iterates the following steps:
¢ collect data
¢ estimate materia parameters from data

¢ optimize collection parameters from MRI model

2.3.1 Modd of the MRI Process

Theinner loop of our optimization process requires the prediction of material signaturesfor agiven
set of collection parameters. We model the MRI process to do this.

Inthemode! we have chosen [Farrar and Becker, 1971], each material hasthree parameters, N(*H),
Ty, and T,. These parameters are proton spin density, a longitudina relaxation-time constant and
a transverse relaxation time constant (see Table 2.2). The parameters are defined in the Bloch
equations [Bloch, 1948].

We define three functions that characterize each protocol that we support. We describe them
below. New protocols are added to our framework in an object-oriented manner by specifying these
three functions. The first function, v(Pc, Pr), specifies the data value expected for a given set of
material parameters and collection parameters. The second function, o (Pc, Pry), gives a model of
the standard deviation of the data value as a function of the material and collection parameters.
The third function, t(P¢), defines the collection time necessary to collect data using the collection
parameters.

From data collected with avariety of collection parameters, we estimate the unknown materia
parameters for each material, N(*H), Ty, and T, as well as any unknown collection parameters
defined below.

In the estimation procedure wefirst interactively sel ect locations representing a specific material
within severa datasets collected with different collection parameters. For each material in each

dataset, we then calculate the standard deviation of the data values at the selected points and use it
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to estimate the measurement error. With the data val ues and measurement error estimate, we use an
implementation of Levenburg-Marquardt non-linear parameter estimation [Press et d., 1992] to find
the parameters. The parameter-estimation algorithm returns a value, y?, that measures how well
our model fitsthe data; v? = 1.0isa"“perfect” fit.

We next describe the equations for several collection protocols. The details of the protocols are
not described here; we need only to know the expected signal, noise, and collectiontime for agiven

set of collection parameters.

Spin-Echo 2-D Protocol

Spin-echo protocolscan bedesigned for collecting 2-D slicesor 3-D volumes. Thissection describes
aprotocol that collectsaglice. The protocol has three collection parameters. Tg, the time between
excitations; Tg, thetimefrom excitation to collection of an echo; and «, the excitation tip angle (see
Table 2.1). The Bloch-equation-based MRI model [Rosen et al., 1984] predicts that the image value,

v, for aparticular material with materials parameters N(*H), Ty, and T will be:

e .

_R7 R\ _E sin FOV; FOV
Vee2(Pe, Pr) = ku.seoN(H) (1 B PR TT) e (@) H L ~ 0 (2.

1+cos(a)e T ! 0

We choose ky.se2 SO that Vs S unitless and measures the signal per voxel.
Thedeviationis
K,.se2

s2(Pc, Pm) = T:a (2.2)

where NgN; is the number of samplesin a collected slice and N, is the number of acquisitions
averaged together. og(Pc, Pry) is unitless and measures noise per voxel.

The acquisition timefor 2-D spin-echo protocol is calculated as follows:
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where Ng, the number of groups of concurrently-acquired slices, is:

e ] -

Spin-Echo 3-D Protocol

Equationsfor a3-D spin-echo protocol are similar to the 2-D case. Expected signal per voxel is

TE .
_TRe> _Ir _IE FOV, FOV; FOV,
Vees(Pe, Pr) = KysesN(H) (1—2e T te ) L O 8 2 8 e
2 1 0

1+cog(a)e T

(2.5)
Expected noise per voxel is
P Pr) = 2 26
Collectiontimeis
tse3(Pc) = NaNoN1 TR (2.7)

I nversion Recovery 2-D Protocol

Inversion-recovery is a different protocol. It incorporates an additional step where the T; of a
material can influence the resulting image values. As with spin-echo protocols, both dlice and
volume collections can beimplemented. We show the equationsfor a slice-collecting version of the

protocol [Hendrick et a., 1984]. Expected signal per voxe is

Te i
_0 _TR-7 R\ _Ie FOV,; FOV,
Vir2(Pe, Prr) = kyir2N(EH) (1— 26T _ 26 T 46 TT) e Snl@) _,, FOVi FOVo

_Ir
1+coga)e m N No

(2.8)
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Expected noise per voxel is

&

UirZ(Pm Pm) = \/ﬁ (2-9)
Collectiontimeis
tir2(Pc) = tse2(TR, Te, Na, N2, N1, No) (2.10)

2.3.2 Imaging Goals

We next describe how our imaging goals are turned into a constrained optimization problem. We
define an objective function, E(p), that we want to minimize subject to a set of constraints, ¢;. The
constraintsare all linear in the parameters that we optimize over, and must be inequalities.

Our objective functionis

E(p) = > E(p)

subject to constraints c;

(2.11)

We decompose each imaging goa into one or more terms, E, (p), in our objective function and

ohe or more constraints c;.

Goal: Good Tissue Discrimination

This imaging goa is intended to provide sufficient contrast so that pairs of materials can be
distinguished from one another. For each pair of materials we define a penalty, Eqij(p), that is added
to E(p). This penalty is zero where the material data values, v; and v;, are sufficiently separated

relative to their expected deviations, oj and o;.

max(0, dij(p) — dgij)
kg

Edij(p) = (2.12)

where dg;j isthe goal separation between the two materials and d;j(p) isthat actual separation. Ky is
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aparameter that weights the relative importance of this penalty term with respect to other termsin

E(p). It ismeasured in units of standard deviation. For our optimizationswe set

ks =0.1 (2.13)

to indicate that we are concerned with overlaps on the order of 0.1 standard deviations.
For scaar data the separation between two materials, dij(p), is defined as the ratio of the

difference between their means and the average of their deviations

2(vi(p) — vi(p))

WO =10 )+ oo

(2.14)

This definition differs from that of contrast-to-noise ratio (CNR) by incorporating a noise estimate
for both signa values.
The definition for separation extends to vector-valued data in a straightforward manner under

the assumption that the noise in each element of the vector isindependent.

Goal: Observe Machine and Protocol Limitations

Each protocol has certain limits for its parameters. We implement these as constraints on the
optimization parameters. For the 2-D and 3-D spin-echo protocols, we define constraints for the

minimum and maximum Tg values that can be used. They are

N
Coe1 © Te > Keer + 70 DW (2.15)

where kg isaconstant defined for agiven machine and DW isthe time necessary to collect asingle

sample (dwell time).

N
Cse2 I TE < TR — Keez — 70 Dw (2.16)

For the doubl e-spin-echo acquisition we add another constraint to prevent the acquisition times
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for the echos from overlapping:

Cd1 - TEl + kdl + No DW < TE2 (2.17)

Goal: Minimize Collection Time

We formulate our time-minimization goal as a penalty term, E;(p), added to the objective functions

E(p).

tprotocol ()

Eu(p) = K

(2.18)

Note that this term is linear in the collection time tyrotocol(p). This means that, in general, the
overlap penalties, Equation 2.12, will be satisfied before thisterm has an effect on the optimization.

k; scales E; relative to other termsin E(p). We use

k = 20s (2.19)

to indicate that the amount of collection time that we consider to be significant is 20 seconds.

2.3.3 Solving the Constrained Optimization Problem

We optimize E(p) intwo steps: first, we search the space of parametersto find asomewhat inaccurate
global minimum. With that as a starting point, we use a second solver to refine the accuracy of the
minimum. The first search uses a simulated annealing method related to the simplex method [Press
eta., 1992]. Thisoptimizer doesnot have explicit support for constraints. We convert the constraints
to apenaty that is very large where they are not satisfied, and zero where they are. Because all of
the constraintsare inequalities, this hasthe effect of ruling out infeasi ble sol utionswithout changing
the objective function in feasible regions. The simulated annealing solver evauates E(p) many
times while searching for a globa minimum, and so does not converge very quickly. We use it to

search the parameter space and to find an approximately optimal solution.



2.4 Results 25

If there is no feasible solution, the constraints may not be satisfied.

The second optimizer uses a sequential quadratic programming method [NAG, 1993]. It has
very good convergence and explicit support for constraints, but does not search the parameter space
thoroughly, and so would not find the global minimum aone. We start it with the approximate

solution from the first optimizer and it finds alocal minimum near itsinitial solution.

2.4 Results

We tested our methods on simulated data, real data of a Dungeness crab collected in a 1.5 Tesla

clinical machine, and rea data of a mouse embryo collected on an 11.7 Teslaresearch machine.

241 Simulated Data

Wefirst “collected” simulated dataand applied our optimizationtoit. The" object” that we measured
was a pair of concentric spherical shells, as shown in Figure 2.6. The simulated collection process
used Gaussian sampling to cal culate each samplein each dataset based on the geometry, the material
of the “object,” the collection parameters, and Equation 2.1. Normally distributed noise derived
from Equation 2.2 was added to each sample.

Figure 2.7 shows one image for each set of collection parameters used. Table 2.3 shows the
materia parameters used and the results of fitting material parameters to the collected data. A x?
of one would indicate that the model has matched the data exactly.

From the estimated material parameters and a set of imaging goas, we estimate collection
parameters that will achieve the goals. Our goals are to achieve a contrast-to-noise ratio of eight
between each of the three pairs of materials and to collect data at the same 10 x 40 x 40 resolution
at which the calibration datawas collected. We chose the resolution and CNR valuesto collect data
that would work well with our classification algorithms. Figure 2.8 shows two objective functions
for a spin-echo collection. In one Ny = 3 and in the other Ny = 4. The shape of the objective

function changes for different values of N, with the minimum moving toward smaller T valueson



2.4 Results 26

Figure 2.6: The shape of the object shown in the simulated datasets of Figures 2.7 and 2.9 is two concentric spherical
shellsaround ahollow interior. The square shows one slice of collected data. O

30
23.3
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16.7
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300 433 567 700

Figure 2.7: An array of simulated data “ collected” with different Tr/Te combinations. All images are displayed on the
same intensity scale, so those with low signal are difficult to see, but still have useful information. The shape of the
simulated object in this figure is shown in Figure 2.6. The brighter region is composed of two materials, although they
are similar and not well differentiated by the collection parameters shown. O
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materia parameters
material | kN(*H) T1[9] T, [ X2

1 3000 1200 120

fit | 2954+ 60 1183+30 123+25 |1.01
2 3100 1300 100

fit| 3269+ 72 1379+37 97.1+14 | 101
3 0

fit | 172+21 50.6+222 122+87 | 1.01

Table 2.3: Material parameters for simulated data example. The first row for each material shows the parameters used to
generate the simulated data, and the second row shows the parameters fit to the data, along with a x2 value. A x? value
of 1.0 indicates that the model fits the data exactly. Valueswithin 0.2 of 1.0 indicate a very good fit. Material 3 has no
signal, so T and T, are not meaningful. O

log(E()

=
|
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TE (Na=3) TE (Na=4)

Figure 2.8: The objective function for the simulated example. We have asked for ten slices at 40x40 resolution, and a
contrast-to-noise ratio of eight for each pair of materials. This graph showstwo versions of the objective functions for a
single spin-echo acquisition. On the left, N, isfixed at 3, and on the right N, isfixed at 4. The flatter region in the center
is caused by the time minimization goal. It slopes downward toward the origin. The steeper sections are caused by the
material separation goal. Note that the steep sections are less pronounced with alarger N, because the expected noise in
the dataset is reduced. O

protocol Tr Te Na Tgr, Te, Np, objective coll. time
[ms] [ms] [ms] [mg] [m:g]
spin-echo | 12789 109.1 4 10.25 3:25
spin-echo | 10235 960 5 10.23 3:25
two spin-echos | 1308 110.7 4 130 80 1 10.75 3:34
double spin-echo | 12769 1043 4 1143 20.52 6:49

Table2.4: Optimized collection parametersfor simulated data using various protocols. Note the two spin-echos solutions
have almost identical collection times but different collection parameters. Both solutions satisfy the imaging goals of
10x10x40 resolution and a contrast-to-noise ratio of eight. For the “two spin-echos’ case, two independent spin-echo
acquisitions are run sequentialy. O



2.4 Results 28

0.007 data histogram —— 1
predicted materia 1 distribution -
0.006 | predicted material 2 distribution |
' predicted material 3 distribution (air)
Z o005 | |
g
> 0004 r |
8 0003} |
£
0.002 |
0.001 i
0 N — /A

0 200 400 600 800 1000 1200 1400
MRI Value (TR/TE = 700/10)

Figure 2.9: Histogram, predicted material distributions, and image from simulated dataset before optimization. Thereare
two materials in this object, but the data values for both are very similar and difficult to distinguish in the image. The
similarity is shown in the histogram by the two normal distributions that overlap significantly. The relative heights of the
histogram and predicted material distributions are not meaningful. O
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Figure 2.10: Histogram, predicted material distributions, and image of simulated data post optimization. The relative
heights of the histogram and predicted material distributions are not meaningful. Note that materials are clearly dis-
tinguished in both the histogram and the corresponding slice, unlike in Figure 2.9. Finding equally good collection
parameters by trial and error would be very difficult. O

theright. Table 2.4 shows the optimal objective function values calculated for different protocols.
Figure 2.10 showsthe results from the optimal protocol. Comparethisto Figure 2.9, atria run with

arbitrary parameters. In Figure 2.10 the boundary between the materialsis clearly shown.

24.2 Real Data: Mouse Embryo
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Figure2.11: An array of datasets of a mouse embryo collected with different Tr/ Te combinations. The slicesare 500pxm
thick and each voxel 40um x 40pm. All images are displayed on the same intensity scale, so those with low signal are
difficult to see, but still have useful information. O

Figure 2.12: Diagram of the shapes shown within each slice of mouse embryo data. Each numbered region indicates an
interactively chosenregion in collected slicedata. O

Our next example utilized slice data of a fixed mouse embryo collected in a 11.7 Tesla MRI
microscope. The mouse was surrounded by agar containing a T, contrast agent to nullify signal.
We first collected data using a variety of collection parameters. Theinitial data was 500p:m dlices
with 40pm x 40pmvoxels. Figure 2.11 showsone slice for each set of initial collection parameters
used. Within that data we identified regions to treat as uniform materials and interactively picked
points within each region from a display of the slices. We show a diagram of the regions in
Figure 2.12.

From the chosen pointswithin the datasets and the known collection parameters of the datasets,
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estimated material parameters initial data
material kN(*H) Ty [S] T2 [s] X2
1|3793+28.6 1999+ 25.6 53+ 0.4 1.85
2 | 3461+ 30.6 1369+ 20.5 44 + 0.5 1.78
3| 45+10 8+ 135.6 5728 + 11133.1 1.98
4 | 2963+ 38.7 1507 + 28.8 35+ 0.3 1.83
513116 £ 25.2 1374+ 194 32+ 0.3 1.98
estimated material parameters fina iteration
1|3468+21.3 1710+ 15.0 54+ 0.3 321
2|3373+29.4 1355+ 19.1 45+ 0.5 2.05
3| 29+05 94 137.9 100000 + 649816029.7 | 2.52
4| 2685+ 349 1490+ 29.0 38+0.3 1.98
53072+ 239 1328+ 16.6 32+0.2 2.05

Table 2.5: Estimated material parameters for mouse embryo data. We show the parameters as estimated from the initial
datasets, and as re-estimated after four steps of the outer level of the optimization process. Each row shows the material
parameters for one region in the phantom. See Figure 2.12 for the regions corresponding to each row. Because material
3 has virtually no signal, the T, and T, parameters have amost no influence on Equation 2.1 and the fitted values are
arbitrary. O

iter. protocol TR Te Nj TR, Te, Np, oObjective coll. time
[ms] [ms] [ms] [ms] [h:m:g]
1 spin-echo | 127208 7 28 na na na 238442  1:15:59
two spin-echos | 14.2555 9.26 2 127212 7 28 238763 1:16:03
2 spin-echo | 1317.62 8.28 30 na na na 258.747  1:24:20
two spin-echos | 1318.64 827 30 12 7 2 259177  1.24:27
3 spin-echo | 152426 7 30 na na na 310.623  1:37:33
two spin-echos | 1126.71 7 16 1738.63 7 16 310715  1:37:48
4 spin-echo | 1343.72 940 38 na na na 336.161  1:48:56
twospin-echos | 13443 939 38 19483 1448 2 336.653 1:49:04

Table 2.6: Optimized collection parameters for phantom data using two protocols. O

we estimated material parameters for each of the materias as outlined in Section 2.3.1. The
estimated material parameters for this example are shown in the top half of Table 2.5. Because
material 3 produces virtually no signa in the datasets we collected, the T; and T, values are not
meaningful.

From the estimated material parameters and a set of imaging goals we estimate collection
parameters that achieve the goals. Our collection goals are to achieve a contrast-to-noise ratio of

Six between each pair of materials, and to collect data at the same 256 x 128 resolution as the



2.4 Results 31

0 50 100
TE (Na=238)

Figure 2.13: An example of the objective function for the mouse embryo. We have asked for one slice at 256x128
resolution, and acontrast-to-noise ratio of six for each pair of adjacent materials. This graph showsthe objective function
for single spin-echo acquisition with N, fixed at 38. O

initial data. We iterated the outer loop of the optimization process four times collecting data at the
suggested optimum after each iteration. The results of each step of the outer-level optimization
are shown in Table 2.6. For each step we estimated new material parameters from both theinitial
datasets and all new ones. The results of the material parameter estimation for the fourth and final
iteration are shown in the bottom half of Table 2.5.

Figure 2.13 shows the objective function for the fourth iteration of the outer level optimization,
a spin-echo collection with afixed N, = 38.

Figure 2.14(i) shows alarger image of one of theinitial datasets, and Figures 2.14(ii)—(iv) show
datacollected using the optimal protocol and parametersfrom thelast three outer-level optimization

steps. The results of the outer-level optimization are discussed in Section 2.5.1.

24.3 Real Data: DungenessCrab

Our next example utilized Dungeness crab embedded in gelatin. The crab was dispatched with an
overdose of anesthetic; the gelatin prevented motion and provided contrast between the crab shell

and the surrounding space.
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Figure 2.14: Data collected: (i) initially and (ii)—(iv) during the last three outer-level optimization steps. Table 2.6 shows
the collection parameters for (ii)—(iv) optimization. See Section 2.5.1 for a discussion of the outer-level optimization
process. O

materia parameters
material kN(*H) Ty [mg] T, [ms] X2
gelatin | 14774+ 3.8 1782+ 10.1 701+ 9.1 1.49
muscle | 1410+ 10.4 1193+ 15.6 64+ 0.8 2.38
water | 1420+ 20.6 1803+ 42.2  147+3.3 | 193
shell 80+ 6.3 1414+ 159 1424 +528.7 | 1.33

Table 2.7: Material parameters for crab data example. Each row shows the material parameters for one material in the
crab. A set of points representing each material is chosen interactively. O

We first collected data using a variety of collection parameters. Figure 2.15 showsone slice for
each set of collection parameters used, and Table 2.7 shows the results of estimating parameters for
each material we have chosen within the crab.

From the estimated material parameters and a set of imaging goas, we estimate collection
parameters that achieve the goa's, which were a contrast-to-noise ratio of ten between each pair of

materials and a collection resolution of 512x512x34 identical to the initial data. Table 2.8 shows
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Figure 2.15: An array of datasets collected with different Tr/Te combinations. All images are displayed on the same
intensity scale, so those with low signal are difficult to see, but still have useful information. O

protocol | Tgr Te Na Tr, Tg, Na, oObjective collectiontime
[ms] [mg] [ms] [mg] [m:g]
doublespin-echo | 2589 55 1 70 66.314 22:05
twospin-echos | 3246 835 1 714 15 1 101.376 33:48
spin-echo | 4232 637 1 109.515 36:07

Table 2.8: Optimized collection parametersfor crab data using three protocols. Thecollection timevalueisfor thirty-four
3-mm slices of resolution 512x512 with no inter-slice spacing. The goal contrast-to-noise ratio wasten. O

the optimal objective function values cal culated for different protocolsand Figure 2.16 the objective
function for a fixed N; = 1. Figure 2.17 shows data collected using the optimal protocol and
parameters.

Figure 2.18 compares the predicted data and noise values from the optimization process with

the data and noise values collected on the machine. Each cross is centered at the mean value for
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Figure 2.16: Objective function for the crab datasets. We have asked for 34 slicesat 512 x 512 resolution, and a contrast-
to-noise ratio of ten for each pair of materials. This graph showsthe objective function for a single spin-echo acquisition
with N, fixed at 1. Asin Figure 2.8, the flat areais due to the time-minimization goal and the steep areas surrounding it

to the material separation goal. The objective function is shown as zero where constraints preclude solutions, primarily
around the left and back edges. O

Figure 2.17: One dlice of crab data collected using the optimized parameters. Note the contrast between gelatin, shell,
muscle, and water. The muscle and water are distinct materials within the claws. O
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Figure 2.18: Mean and deviation values predicted by the optimization processand collected on the machine. Each cross
represents one material andis centered at the mean value for the material. The cross extends one standard deviation away
from the mean in each direction. The four solid crosses show the predicted values for the optimal collection parameters.
The dashed crosses nearest the solid ones show predicted values for the collection parameterswe actually used. The other

set of dashed crosses shows the measured mean and deviation in data collected from areal crab. See Section 2.5.2 for
more discussion. Datawas collected on a GE Signa 1.5 TeslaMRI machine. O

amaterial and extends one standard deviation away from the mean in each direction. The crosses
labeled “ optimum predicted” are the expected mean and deviation for the optimal protocol listedin
Table 2.8. Due to changes in the size of the crab and surrounding gelatin and due to inaccuracies
in the machine protocol limitations, the optimal parameters were not possible. Instead of collecting
dataat Tr/Tg, / Te, = 2589/55/70, weused Tg/Tg, / Tg, = 2583/53/71. The“predicted” and“ data’

crosses show the expected and measured mean and deviation for the parameters we collected.

2.5 Discussion

In this section we explain how our results show the tradeoffs between different protocols, speculate

on some characteristics of our MRI material model, reflect on the impact of various choices for
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Figure 2.19: Predicted and measured mean values and standard deviations for each material/iteration combination in the
mouse embryo optimization process. The dashed lines represent predicted values and the solid lines measured values.
Each mean/deviation is shown as aline segment extending one deviation to the left and right of the mean value, and mean
values for the same material are connected together. O

the contrast-to-noise imaging goa, and discuss some issues surrounding the simulated annealing

solver.

25.1 DataCollected from Mouse Embryo

The outer-level optimization process did not converge well in four steps. With each step, the
algorithm discovered a new predicted optimal solution, but the predictions did not match the data
collected with the suggested parameters.

Figure 2.19 shows the predicted and measured mean and deviation for each of the materials for
each of the optimization steps. Each mean/deviation pair is represented by aline segment centered
a the mean and extending for one deviation to theright and left. Mean values for asingle materia
are connected, with iterations running from the bottom to the top. The solid lines are predicted
values and dashed lines measurements.

We believe that the prediction inaccuracies are due to inaccuracies in the MRI material and

collection model, which we discuss further in Section 2.5.3. In particular, for the dlices we
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collected, the dice thickness was over ten times larger than the other voxel dimensions, and so

voxels containing a pure material were difficult to find.

25.2 DataCollected from DungenessCrab

We collected datafrom one crab and used it to optimize parameters for another. Thesignal and noise
values in the datasets from the second crab did not exactly match the predicted values generated
using the datasets from the first crab. There are a number of possible explanations for this. First,
the sample was different, although the species in both cases were the same and the preparation
as similar as possible. Second, in addition to regular calibration changes, the MRI machine was
serviced between theinitial and final collections, and parts of the gradient amplifiers were replaced.
Third, the temperature of the sample was different between the initial collections and the final
collection. Any of these changes could have affected the data values.

A solution to this problem is to collect initial data, run the optimization while the sample
remainsin the machine, and then immediately collect optimized data. The reduced lag time hasthe
advantage of providing immediate improvement to the collection process and avoiding any changes
that are likely to impact the results. The timeto run the optimizationis only afew minuteswith the
current implementation, and could be sped up significantly.

Our MRI material and collection model aso impacts the accuracy of the predictions. See

Section 2.5.3 for more detail .

253 MRI Material and Collection Model

For amodel that matches a set of data values with known normally distributed noise, x2 should be
1. Our simulated data, which is generated with the same mode! used to fit it, has y2 = 1.01 for all
materias. Within the Dungeness crab and mouse embryo datasets, however, \? ranges from 1.33
to 3.2. A modd that does not fit well creates less-accurate predictions, and data collected at the
predicted pointswill not satisfy our goals.

We speculate on a number of reasons for the large 2 values. First, in materials with very little
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signal, such as gasses, hard solids, or the agar/contrast-agent combination used around the mouse
embryo, there is virtualy no decay of the signa values. The T, and T, parameters, therefore,
provide unused degrees of freedom to the fitting process. In addition, because data valuesin MR
images are magnitudes of complex numbers, the values will not be normally distributed. For values
where the mean is far from zero relative to the standard deviation, the distribution is very close
to normal. When the mean is close to zero relative to the standard deviation, the distribution can
be quite different from a normal distribution. Our current implementation treats the distribution
as normal, and so gets inaccurate estimates for the signal and noise measurements. It should be
possible to identify both of these cases and correct for them in fitting the model and predicting
results.

A second reason for the large \? values is that each sample value is an integral over aregion
of space. The value incorporates effects from each materia within that region, and may not be
representablewith asingleN(*H), Ty, and T, value. Thiseffect can occur in regionswhere materials
are mixed together at a scale much smaller than asinglevoxel. It should be possibleto identify cases
where this is happening and address them either by choosing points where materials are not mixed
or by fitting multiple parameter sets to each material to take this small-scale mixing into account.
Chapters 3 and 4 illustrated work in classification of voxels containing mixtures of materials, and
thiswork may be applicable to the material parameter fitting problem as well.

Finally, the MRI model may fit collected datawell, and yet not predict dataval ues accurately. In
particular, when predicting valuesfor collection parameters far from the collection parameters used
to estimate material parameters, materia signaturesare less accurate. Iterating the outer loop of the

optimization procedure to collect data near the predicted optimal point addresses this problem.

2.5.4 Choice of Protocol

We observe from our experiments that optimizations on machines that support a double spin-echo
collection protocol generally achievethe requested imaging goal swith ashorter collection timethan

either one or two single spin-echo acquisitions. The double spin-echo protocol collects twice the
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Figure 2.20: Optimal collection time as a function of contrast-to-noise ratio (CNR). O

datain the same amount of time, improving the signal-to-noiseratio by afactor of v/2, an advantage
that amost always overshadows the advantage of two single-echo acquisitions, despite their two
different T values. In addition to the increase in the signal-to-noise ratio over one single-echo
dataset, the second data value collected by a double spin-echo acquisition has a second echo time

and so can achieve contrast between material s not distinguished by the first echo aone.

255 Choice of Contrast-to-NoiseRatio (CNR)

The choice of contrast-to-noise ratio between pairs of materials has a significant impact on the
resulting collection time. Figure 2.20 shows optimal collection times for the Dungeness crab
dataset for aselection of CNR values. For CNR goals less than about 10, the CNR can be achieved
without increasing the number of averages, N;. As the goal goes above 10, N, must be increased.
Each factor of n CNR gain, then, requires a factor of n? increase in N,, and a correspondingly

guadratic increase in collection time.
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256 Solver

Simulated Annealing. Simulated annealing is essentia for finding good solutions to the opti-
mization problem we have constructed. The objective function has multiple local minima, some
comparable in magnitude, and some not. Most non-stochastic solverswill find only a nearby local
minima, which may not be adequate. The objective function can aso have discontinuities, particu-
larly for the spin-echo 2-D protocol, where the collection time depends on the number of slicesthat
can be simultaneously collected during a single Tr. Many solvers assume continuity and fail when

that assumptionis violated.

Annealing Schedule. We have implemented the annealing schedule suggested in [Press et d.,
1992]. Theinitial annealing temperature is dependent on the CNR imaging goal that we set because
ahigher CNR goal creates higher ridgesin the abjective function. For aCNR goal, g, the maximum
contribution along a ridge created by the god is (%) 2. Taking into account overlapping ridges
and the collection-time component of the objective function, we have used an initia temperature of
5000 for CNR goas up to 10.

The annealing schedule must be sufficiently long to explore the space of possible parameters
to find the optimum. The number of function evaluations depends on the number of parameters a
protocol has. For three parameters (2-D spin-echo), 7000 eva uations have been sufficient; for four

parameters (2-D double spin-echo), 12000; and for six parameters (two 2-D spin-echos), 18000.

Speed. Simulated annealing is slow, but for our problems the algorithm has been fast enough,
requiring on the order of 2—15 minutes on an HPR000/700 workstation to find an optimal solution
among two or three protocols. Thisisfast enough for an object to remain in a scanner while a new

set of parametersis calculated.
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2.6 Conclusion

We have presented a goal-based framework for setting up and solving an optimization problem
to find the best protocol and set of parameters for collecting MRI data. Within this framework
we have shown how to implement imaging goal s that encode resolution and contrast-to-noise-ratio
requirements of the resulting data, limitations of the MRI machine and collection protocol, and
other goals such as the desire to minimize collection time. The optimization processisindependent
of protocol, and we have incorporated a selection of protocolsinto our implementation.

We have used our implementation to find an optimal protocol and set of parameters for samples
in two MRI machines, as well as for simulated data. The resultsindicate that an accurate moddl of
the MRI processimproves the accuracy of the optimization process and support our hypothesisthat

constrained optimization can be used to select good MRI collection protocols and parameters.



PART I
Bayesian Tissue Classification

The following three chapters describe a Bayesian framework for classifying
MRI data and two algorithms devel oped within the framework. Chapter 3 gives
anintroductionto the problem, describesanew Bayesian framework for creating
algorithms to solve the problem, and summarizes a family of new algorithms
we have created within the framework. The algorithms are described in detail

in Chapters4 and 5.

42
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Chapter 3

Bayesian Tissue-Classification Framework

Material classification is a key step in creating computer graphics models and images from vol-
ume data (see Figure 3.1). We present a new Bayesian framework for constructing classification
algorithms and several new a gorithms constructed within the framework.

The new agorithms identify the distribution of different material types in volume data such
as those produced with Magnetic Resonance Imaging (MRI) or Computed Tomography (CT). We
apply them to MRI data because MRI measures spatia information about the chemical structure
of an object. Our algorithms treat a voxel as a volume, not as a single point. We reconstruct a
continuous function from the sampled data and use all of the values within each voxel volume to
identify materials within the voxel using a probabilistic approach. The agorithms further assume
that voxels can contain more than one material, e.g., muscle, fat and bone; we compute the relative
guantity of the constituent materials within each voxel.

Other classification methods, as discussed in Section 3.1.1, have utilized Gaussian probability
density functionsto model the distribution of valueswithin adataset. Gaussian basis functionswork

well for voxel s contai ning unmixed materials. They do not work well where the materialsare mixed
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Figure 3.1: Our computational framework for creating geometric models, as shown earlier in Figure 1.1. In Chapters3-5
we describe the classification step, emphasized in the diagram. Our new techniquesidentify materials in sampled volume
data to produce a new sampled volume dataset for each material. O

together because measurements combine characteristics of their component materials and are not
normally distributed. We extend the approach by deriving non-Gaussian “mixture”’ basis functions.

Because we model mixtures of materials and treat voxels as volumes, our techniques reduce the
classification artifacts that occur a ong boundaries between materias. The techniques are useful for
making higher quality geometric models and renderings from volume data, and have the potential
to make calculations of tissue volumes within a dataset more accurate. They also classify noisy,

| ow-resolution data well.
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3.1 Introduction

We begin by describing related work and defining terms. We then present the Bayesian framework
we have devel oped to create classification a gorithms and work through asimpleexampletoillustrate
the process. Section 3.3 gives an overview of the family of new algorithmsthat we have devel oped,

deferring their detailed descriptionsto Chapters 4 and 5.

3.1.1 Redated Work

Much previouswork is devoted to material classification in sampled datasets such asthose produced
by MRI or CT [Dudaand Hart, 1973]. [Clarkeet ., 1995] presents areview of classification methods
applied to MRI data. Many of the techniques introduce classification artifacts, particularly on
boundaries between different materials. The artifacts, which tend to appear as jaggy stair steps or
as additional surfaces, are particularly detrimental to computer graphics images and models.

Discrete statistical classification techniques are often used to identify a single class for each
sample within a dataset [Vannier et a., 1985], [Vannier et d., 1988], [Cline et a., 1990]. Each class
contains samples representing a particular material. These techniques work well in regions where
only one material is present, as in the interiors of single-material regions, but tend to fail where
voxel s contai n boundaries between regions, sinceagiven sampledoes not represent asinglematerial
there (see Figure 4.1).

[Choi et al., 1991] presents a method that models each sample as representing a mixture of
materials. The technique, like many others, classifies a region based on a single measurement

within the region, effectively treating each voxel as asingle point.

3.1.2 Definitions

We refer to the coordinate system of the space of the object we are measuring as spatial coordinates
and generally use x € X to refer to points. X is ny-dimensional, where ny is 3 for volume data, but

can be 2 for dlices.
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Figure 3.2: We definea sample asascalar or vector valued element of a multi-dimensional dataset. A voxel isthe region
surrounding a sample. O

Each measurement, or sample (see Figure 3.2), may be a scalar or vector and lies in feature
space (see Figure 4.3), with points frequently denoted asv € V. Feature space is hy-dimensional,
where ny is onefor scalar-valued data, two for two-element vector data, etc.

From the samples we reconstruct a continuous function p(x) over X by interpolating sample
values. We use tricubic interpolation and so incorporate information from 64 nearby samplesinto
each interpolated measurement. A voxel, voxel volume, or voxel region (see Figure 3.2) is the
volume surrounding a sample. The terms are interchangeable. We use voxel volumes that exactly
cover the volume, but overlapping or non-adjacent voxels are also possible. We are frequently
interested in the behavior of p(x) over the region defined by the volume of avoxel.

Classification algorithms classify a voxel based on information derived from the raw datain or

near the voxd. We refer to the information as voxd -info, and labdl it h.

3.2 A Framework for Solutions

We define a new statistical framework (see Figure 3.3), using Bayesian probability theory [Loredo,
1989] and approximations of conditional and prior probabilities, for creating classification algo-
rithms. Within that framework we have created a family of new agorithms that calculate the
probability of a particular combination of materials given the histogram over a small region. We
then find the most likely combination for the region.

In contrast with other work, we treat each voxel as avolume. Ideally, we would like to measure
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Figure 3.3: Stepsin creating and using anew Bayesian classifier. In thefirst step we construct classification probabilities,
which estimate the probabilities of different combinations of materials within a voxel. The second step, classification,
iterates over each voxel applying the classifier to determine the most likely materials. O
the exact materia at each point within the volume. The data-collection process does not samplethe
volume at every point; however, based on an assumption about the process, we can reconstruct from
the samples a band-limited function p(X) that is defined over the volume [Oppenheim et d., 1983].
With the distribution of values from p(X) over the volume of a voxel, we identify materials within
the voxel probabilistically. By using the reconstructed continuous measurement function p(x) and
not just a single measurement, we incorporate more information into the classification process and
therefore increase its accuracy.

In this section we outline how to construct a new classification algorithm within our framework,

illustrating the process with an existing algorithm.

3.21 Bayesan Construction of Material Probabilities

The construction involves four steps: choosing voxe-info to represent the information in a voxe,
selecting a set of assumptions about the collection process, defining a parameterized model of the

voxel-info, and deriving materia probability estimates.

Choose voxel-info.  Our new agorithms use histograms cal culated over the region of a voxel as
voxel-info; other choices are possible, as we explore in Section 8.2.3. We have chosen histograms

for anumber of reasons. First, they generalize single measurementsto measurements over aregion,



3.2 A Framework for Solutions 48

Frequency

Image intensity
(0

(iii)

(iv)

Figure 3.4: Benefits of histograms of vector-valued data. We show histograms of an object with three materials. (i) isa
histogram of scalar data and showsthat material mean valuesare collinear; therefore, distinguishing among more than two
materials is often ambiguous. (ii) represent a histogram of vector-valued data, with one MRI value along the axes at the
bottom of the figure and one along the left side. Brighter points represent larger values of the histogram. The histogram
showsthat mean values often move away from collinearity in higher dimensions. (iii) isanother representation of the same
histogram. (iv) shows a different histogram demonstrating that the collinearity problem can occur with vector-valued
data O

so classification conceptsthat apply to single measurements generalize. Second, the histogramscan
be calculated easily. Third, the histograms capture information about neighboring voxels, which
increases the information content of the voxel-info and improves the classification results. Fourth,
histogramsare orientationindependent; orientati onindependence reduces the number of parameters
in the classification process hence simplifying and accelerating it.

Aswith many other techniques, oursworkson vector-val ued volumedata, inwhich each material
has a characteristic vector valuerather than acharacteristic scalar value. Vector-valued datasets have

anumber of advantages and generally give better classification results. First, they have animproved
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signal-to-noise ratio. Second, they frequently distinguish similar materials more effectively (see
Figure 3.4).

In particular, the jump from scalar to two-element vector dataisvery important. |n scalar-valued
datasets it is difficult to distinguish a mixture of two pure materias with values va and vg from
a pure material with some intermediate value such as vc = (va +Vvg)/2. Thisis because all three
materia values are collinear, as they must be for such a dataset.

With more measurement dimensionsin the dataset, collinearity islessfrequent for most combi-
nations of three or more materias, athough Figure 3.4(iv) illustratesthat it can still occur. When it
does occur, classification works as for scalar-valued data.

We assume different scalar-valued datasets are spatially aligned so that we can build vector-

valued datasets from them.
Codify collection assumptions. In the second step we codify a set of assumptions about the
data-collection process. The assumptions embody information about:

¢ how sampling works on the machine we are using,

¢ theresponses of materials or combinations of materials to the measurement process,

e thespatia uniformity of the measurements, and

¢ geometric restrictionsin our objects.

For our example we will assume that there is a known discrete set of materials, that measurements
for asingle materia are distributed normally, and that each voxel consists of exactly one material.
Section 3.3 liststhe assumptionsfor our new algorithms, someof which areillustratedin Figures4.1

and 5.1.

Model voxe-info. From our choice of voxe-info and the set of assumptions about the data
collection process, we define a parameterized model of the voxel-info, f («). The parameters for the

voxel-info model are divided into two classes. The first, dataset parameters, consists of those that
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Dataset parameters

i continuous  mean value for material i

i continuous  standard deviation for material i
Voxel parameter

o discrete material

Table 3.1: Parameters for the example classification algorithm. Dataset parameters are constant within a given dataset,
while the voxel parameter varies for eachvoxel. O

are known before the voxel classification process. The second, voxel parameters, can vary from
voxel to voxel.

For our exampl e the dataset parameters are shown in Table 3.1.

Estimate material probabilities. Given voxd-info, h, which encodes information from a single
voxel and a parameterized model of the voxel-info, f(«), we want to find the most likely set of
parameters«.. Theposterior probability defineshow likely aset of parameters « isgiven an observed

voxd-info h:

P(a|h) (3.1)

By maximizing the posterior probability we find the most likely set of parameters. Equation 3.1
cannot, in general, be calculated directly, so we use Bayes' Theorem to decompose it into pieces

that we can either calculate directly or estimate.

P(a)P(h|a)

Plolh) = =5

(3.2)

P(h|«) isthelikelihood of a particul ar instance of voxel-info for agiven set of voxel parameters.
We calculate it by comparing the parameterized model of the voxel-info to the actual voxel-info and
guantifying the difference.

P(«) isthe prior probability and tells us how likely each set of parametersis. We estimate the

prior probability from the model of the voxel-info and from the assumptions that we make about
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the data-collection process.

P(h) istheglobal likelihood of aparticular instance of voxe-info. We assumethat it isaconstant
function of h. It becomes a normalization factor for Equation 3.2.

The specific estimates for each of our algorithms are described in subsequent chapters. In the
following section we work through the derivation for an example.

The posterior probability calculation is used within the classifier. For our example, the classifier
calculates the probability of each material for a given measurement and chooses the most likely

material. See Section 4.11 for the detailed derivation of a classifier.

3.2.2 Clasdfication

Estimate dataset parameters. The dataset parameters must be estimated before the classifier
can be used. We estimate them by calculating their values for a training set of voxel-info with
known voxel parameters. In our example we would calculate the mean and variance of a set of

measurements known to be from each discrete material.

Classify voxels. Findly, we calculate the voxel-info for each voxel and use the classifier to

estimate the voxel parameters.

3.23 Exampleof Classification Algorithm Construction

In this section we construct the Bayesian classifier for the example we introduced in Section 3.2.
This classifier is not new [Dudaand Hart, 1973], but its construction within our framework illustrates

how to create a classifier.

Example voxe-info. For our example we define voxel-info he as the single data measurement at

the center of avoxdl.
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Example assumptions.

e1: Each measurement comes from exactly one material.

&: The measurements from each materia are normally distributed.

e3: We know the number of materials and can identify samples from each material within the

data

e All materials are equaly likely.

Example model of voxel-info. Our model of the voxel data, fe(ee), has a single discrete voxel

parameter, ae, that specifies the material within the voxel.

fe(ae) = fae (3.3)

For each materia i, our model hastwo dataset parameters, 1; and o, defining the expected value

and the standard deviation of measurements.

Example material probabilities. From assumptions e; and e, the likelihood, P(he|ae), can be

calculated by evaluating anormal distribution with mean 4., and variance o2 :

1 1 — o\ 2
Pe(he|cre) = o or exp (_E (%) ) (3.4

From assumption ey, the prior probability, Pe(ce), is % where ny, isthe number of materials.

Example dataset parameters. The dataset parameters consist of the mean and variance of mea
surements of each discrete material.

We can cal cul ate the posterior probability, P(ae|he), for aninstance of voxel-info, he, and avalue
of ae given values for the dataset parameters. From assumption ez we find the dataset parameters

by interactively selecting a set of points in the dataset for each material. We define each set as
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measurements of the single material they represent; from them we cal cul ate the mean and variance

for each material.

Exampleclassification. Weiterate over each voxel calculating the most likely valuefor thesingle
voxel parameter «; for each voxel we measure he, the value at the center of the voxel. For each
possible material we calculate the corresponding posterior probability, P(«e|he), and choose the

largest of these values. This gives us the most likely material.

3.3 A Family of Solutions

In this section we give an overview of three new classification agorithms constructed within our
framework to compare and contrast them with one another. The agorithms are described in detail
in Chapters 4 and 5. We first list the assumptionsthat are common to all three algorithms and the
dataset parameters that these assumptionsimply. We then present the assumptions unique to each

algorithm and summarize both the dataset and voxel parameters.

3.3.1 Assumptions Common to New Algorithms

We make several assumptionsthat are consistent among the new algorithmsthat we have devel oped.

Each a gorithm al so makes additional assumptions detailed in Sections 3.3.3-3.3.5.

€. Discrete materials. Thefirst assumptionisthat materials within the objects that we measure
are discrete at the resolution that we are sampling, but not necessarily aligned with the
sampling grid. We make this assumption because we are generally looking for boundaries
between materials, and because we are starting from sampled data, which loses information

about detail that is finer than the sampling rate.

This assumption does not preclude homogeneous combinations of sub-materials that can be
treated as a single material at our sampling resolution. For example, muscle may contain

some water, and yet be treated as a separate material from water. This assumption is not
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€c2:

satisfied where materials gradually transition from one to another over many samples or are
not relatively uniformly mixed. Section 4.8 discusses cases where this assumption is not

satisfied.

Normally distributed noise. The second assumption is that noise is added to each discrete
sampleand that noiseis normally distributed. We assume a different variance in the noisefor
each material. Thisassumptionisnot strictly satisfied for MRI datain some cases, but seems

to be satisfied sufficiently to classify datawell.

Nyquist sampling theorem is satisfied. The third assumption we make is that the sampled
datasets we classify satisfy the Nyquist sampling theorem [Oppenheim et d., 1983]. The
sampling theorem statesthat if we samplea sufficiently band-limited function, we can exactly

reconstruct that function from the samples.

From assumption e the underlying physical object has discontinuous boundaries between
materials, and aninfinite-precision MRI machinewoul d generate adataset with discontinuities
at material boundaries. At finite resol utions, the measurement function must be band limited

so that it can be reconstructed from the samples.

MRI dlicedatagenerally satisfiesthisassumptionor can be pre-processed to satisfy it [Laidlaw,
1992b] within the dice. Without data that satisfy the Nyquist sampling theorem, we cannot
reconstruct a continuous function, and without a continuous function, we cannot extract

geometric models as described in Chapter 6.

3.3.2 Voxe-info: Histograms

For each of our classification techniques we use a histogram over the small region defined by a

voxd to encode the information contained in the voxal. We first reconstruct a continuous function

over the entire dataset from the samples and then use Equation. 4.1 to calculate a histogram over

each voxd!.
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3.3.3 Overview of Algorithm A: Partial Volume Mixtures

Our new partial volume mixtures algorithm, described in more detail in Chapter 4, was developed
to create classified data with fewer boundary artifacts so that we could produce better geometric
models. The choice of voxel-info, the model of the voxel-info, and some of the assumptions
are formulated to capture and identify information about the boundaries. The remainder of the

assumptions help make some of the probability cal culations more tractable.

Additions to common assumptions.

ema. Linear mixtures. Each voxel measurement is a linear combination of pure material mea

surements and measurements of their pair-wise mixtures.

ems. Uniform tissue measurements. Measurementsfor the same material have the same expected

value throughout a dataset.

ems: Box filtering. The spatial measurement process can be approximated by a box filter. This
assumption contradicts ez, but helps us derive a tractable cal culation for the histogram basis

function for mixtures which appears to be accurate enough to classify datawell.

en7. Materialsidentifiablein histogram of entire dataset. The signatures for each material and

mixture must be identifiable in a histogram of the entire dataset.

Description. The parameters for each voxel in this algorithm are density values for each pure
material and for each pair-wise combination of materials and an estimate of the low-frequency noise
withinthe voxel. The densities sum to one, and each density weights a histogram basis function for
either a pure material or amixture. The basis function for pure materialsis a normal distribution.
The basis function for amixtureisderived in Section 4.10. Both are shown in Figure 4.4.

The dataset parameters are the mean and variance values for each pure material, as well as an

expected deviation of the model histogram from actual histograms. The parameters are estimated
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by analyzing a histogram taken over the entire dataset and fitting a combination of materiasto that

histogram. See Chapter 4 for a complete description.

3.34 Overview of Algorithm B: Boundary Distance

Our new boundary distance agorithm, further described in Chapter 5, addresses some of the
limitationswe discovered in the partial volume mixtures algorithm. The voxel-info and most of the
assumptions are the same, but the histogram basis functions are new. The main change is that the
distance from a boundary is explicitly incorporated into the histogram basis function for mixtures.
The explicit model better fits histograms of voxels near boundaries. A secondary changeisthat the

histogram basis functions are derived with the more-accurate assumption of Gaussian filtering.

Addition to common assumptions.

&pa: Only pair-wise mixtures. Each voxel measurement is either a pure material or a mixture of

exactly two materials near aboundary.

6,5 Uniform tissue measurements. Measurementsfor the same material have the same expected

value throughout a dataset.

&6 Gaussian filtering. The measurement process can be approximated by a Gaussian filter.
This assumption helps us derive a tractable caculation for the new histogram model of
boundary-parameterized mixtures and also models the actual collection process better than

box filtering.

&y7. Known materials. We know the number of materials and can identify samples from each

material and mixture within the data.

Description. The voxel parameters for this agorithm are a discrete parameter that determines
the material or mixture, a signed distance from a boundary for mixtures, and an estimate of the

low-frequency noise within the voxel. Once again, the histogram basis functionsfor pure materials
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arenormal distributions. Thebasisfunctionsfor mixturesare derived in Section 5.8.2 and are shown
in Figures5.2 and 5.3.

The dataset parameters are the mean and variance values for each pure materia, as well as
an expected deviation of the model histogram from actua histograms. They are estimated from
atraining set of points interactively chosen for each material and mixture. See Chapter 5 for a

compl ete description.

3.35 Overview of Algorithm C: Boundary Distance with Non-Uniform M aterial

Signatures

Our third new algorithm, further described in Chapter 5, augments the boundary distance algorithm
to handle acommon characteristic of MRI datathat often complicates classification: MRI measure-
ments of the same material that are different at different spatial locations. There are a number of
factorsthat can cause theseintensity distortions, from antennacoilsthat produce spatially dependent
RF radiation to different amounts of absorption of the RF energy in different parts of the object.
The algorithm relaxes the assumption that the expected value for amaterial is constant. Instead, the

expected value is afunction of spatial location.

Additions to common assumptions. Only e differs from the assumptions for the boundary

distance algorithm.

ew: Only pair-wise mixtures. Each voxel measurement is either a pure material or a mixture of

exactly two materids.

es5. Predictable tissue measurements. Measurements for the same material have an expected

value that can be modeled with a small number of parameters across a dataset.

ap: Gaussianfiltering. The measurement process can be approximated by aGaussian filter. This

assumption hel ps us derive atractable cal culation for the histogram model.
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e,7: Known materials. We know the number of materials and can identify samples from each

material and mixture within the data.

Description. Thisagorithmisvery similar to the boundary distance algorithm. The basis func-
tions and voxel parameters are the same. Only the dataset parameters that determine the expected
value for a tissue measurement are different. In this case, the expected value is a parameterized
function of space. Its parameters are calculated from a set of interactively-specified points for each
material. The calculation issimilar to calculating a mean and variance from a set of points, but the

mean is now a function of spatial |ocation.

3.4 Summary

We have presented aBayesian framework for devel oping classification algorithmsand have outlined
three instances of agorithms. We describe the three algorithmsin more detail in the following two
chapters. Chapter 4 discussesthepartial volume mixturesalgorithm, provides more detail about the
assumptions that it makes, describes the implementation, and presents the results. Chapter 5 does

the same for the two boundary distance a gorithms.
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Chapter 4

Bayesian Classification Algorithm A:

Partia Volume Mixtures

In this chapter we describe a new classification technique. We follow the framework presented in
Chapter 3, first describing the construction of the classification technique and then describing the
implementation that classifies each voxel.

Thealgorithm usesthe probability estimatesto classify each voxel inasampled dataset. Thefirst
step estimates basis-function parameters applicable to the entire dataset. The second step estimates
basis-function parameters for each voxel using the dataset parameters and the probability estimates
and then classifies each voxel based on the estimates.

Theinput to our processissampled measurement data, from which we reconstruct a continuous,
band-limited function p(x) that measures distinguishing properties of the underlying materials. Our
unit of voxel-info is a histogram of p(x) taken over a small region. The output is sampled data
measuring the relative volume of each material. We call the output “materia volumeratio densities’

(see Figure 4.2).
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(i) (ii)

Figure 4.1: We start from the assumption that in a real-world object each point is exactly one material, asin (i). The
measurement process creates samplesthat mix materials together, from which we reconstruct a continuous, band-limited
measurement function p(x). For some valuesof x, e.g., P1 and P2, p(X) returns the signature of a pure material. For other
values of X, e.g., P3, p(X) returns a combination of the pure material signatures. (ii) shows regions A and B where p(x)
returns pure material signaturesand region A& B, where p(x) returns acombination. Thegrid lines show how the material
regions may span voxels. O

We assume, asin Figure 4.1, that each voxel isamixture of materials, with mixtureslike A & B
occurring where the band-limiting effects of the data collection process blur pure materialstogether.
From this assumption we derive basis functions that model histograms for pure materials and for
mixtures of two materias.

Wegivean overview of theconstruction of thea gorithmin Section 4.1 and of theimplementation
in Section 4.2. Sections 4.3 and 4.4 give more details on histograms and the basis functions for
modeling them, and Sections 4.5 and 4.6 describe estimating dataset and voxel parameters. We
present results in Section 4.7 and discuss the results and algorithm in Section 4.8. Detailed

derivationsfollow in Sections 4.10 and 4.11.

4.1 Construction

The construction of the algorithm starts with a choice of voxel data and a set of assumptions and
proceeds through a derivation of basis functions to match a model to the voxel data. This section

describes the construction process.
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411 Voxd-info

Aswe described in Section 3.2.1, our algorithm uses histograms over voxe regions to represent the

information contained in avoxel.

4.1.2 Assumptions

A samplemeasuresacombination of materials. A simplifyingassumption of someprevious
techniquesisthat each sample represents ameasurement of one material, rather than acombination
of materials. Because the data-collection process blends measurements of more than one materia
at points near boundaries, this assumption is not always satisfied (see Figure 4.1).

[Drebin et al., 1988] mention the need for mixture classification. They approximate the relative
volume of amaterial represented by a sample with the probability that the sampleis the material.
Asthey point out, thisworks reasonably well for differentiating air, soft tissue, and bonein CT data,
but not in general. In MRI datathe expected data value for one material may often be identica to
the expected value for a mixture of two other, different materials. We address this problem below.

We make the following assumptions about the measurement function, p(x) : R® — R™, and
about the collection process. n, isthe dimensionality of our data. The assumptionsare described in

detail in Sections 3.3.1 and 3.3.3.

€. Discrete materials.

€. Normally distributed noise.

e:3: Nyquist sampling theorem is satisfied.
€ms. Linear mixtures.

ems. Uniform tissue measurements.

ems: Box filtering.

en7. Materialsidentifiablein histogram of entire dataset.
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For many types of medical imaging data, including MRI and CT, these assumptions hold
reasonably well, or can be satisfied sufficiently with preprocessing [Laidlaw, 1992a]. Other types
of sampled data, e.g., ultrasound and sequences of video or film images with lighting and shading,

violate these assumptions, and our technique does not apply directly.

4.1.3 Sketch of Derivation

As shown in Figure 4.1 we start with the assumption that each spatial location in the real world
object isexactly one material, and that the measurement process mixes materiastogether asit band
limits the measurements to the Nyquist frequency of the sampling rate. From that assumption we
will derive (in Section 4.3) an equation for a normalized histogram of data values within a region.
This histogram function is a probability density function (PDF) that tells us the probability that a
measurement will liewithin arange of valuesin that region.

In Section 4.10 we create basis functions to model histograms. These basis functions are
parameterized probability density functionsfor regions consisting of singlematerialsand for regions
consisting of mixtures of two materials. These mixtures are assumed to have been created by the
band-limiting process accompanying sampling. The parameters represent the mean value, ¢, and
variance, s, of a measurement.

Using Bayes' Theorem, the histogram of the entire dataset, our model basis functions, and a
series of approximations, we derive an estimate of the most likely set of materials within an entire
dataset (Section 4.11). Similarly, given the histogram of a voxel region, we derive an estimate of

the most likely density for each material in that region (Section 4.6).

4.2 Algorithm

Thealgorithm produces, asitsend result, asampled dataset containing estimates of material volume

ratio densities. The processisillustrated in Figure 4.2.
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Figure4.2: Stepsin the classification process. We collect MR data, calculate a histogram of the entire dataset, h (v), and
use that to determine parameters of histogram-fitting basis functions. We then cal culate histograms of each voxel region,
h'?*(v), and identify the most likely mixture of materials for that region. The result is a sampled dataset of volume ratio

densities. O

Estimating dataset parameters.

First, we collect and preprocess data to satisfy the assumptions

listed above. Second, we calculate a histogram of the entire dataset, and fit parameterized materia

probability density functions to the histogram to get an estimate of basis function parameters that

are constant throughout the dataset.
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Estimating voxel parameters.  Usingthefitted parameters, we processtheregion for each voxel in
thedataset asfollows. Wefirst cal cul ate ahistogram for the small region and find the combination of
materials most closdly fitting the histogram. Using the estimated parameters, we calculate materia

volumeratio densitiesfor that small region.

4.3 Normalized Histograms

In this section we present the equation for a normalized histogram of a sampled dataset over a
region. We will use this equation as a building block in several later sections, with regions that
vary from the size of a single voxel to regions covering the entire dataset. We will aso use this
equationto derive basi sfunctionsthat model histogramsover regionscontaining single materialsand
regions containing mixtures of materials. Figure 4.3 shows an example of cal culating a normalized
histogram from a continuous function.

For a given region in spatial coordinates, specified by R, the histogram h” (v) specifies the
relative portion of that region where p(x) = v. We define histograms, h*(v) : R"™ — R, as

probability density functions (PDFs). These histograms over regions are a so continuousfunctions:

hR (v) = / RO8(p(X) — v)dx 4.1

This equation is the continuous analog of a discrete histogram. R(X) is non-zero within the
region of interest, and integratesto 1. We define R (X) to be constant in the region of interest making
every spatial point contribute equally to the histogram h™® (v). Note also that h™* (v) integrates to 1,
which isimportant for our interpretation as a PDF. ¢ isthe Dirac-delta function.

We use this equation both as a starting point for deriving materia intensity PDFs, and also as
a basis for calculating histograms of regions of our datasets. The derivations are outlined in the
following two sections and detailed in Section 4.10. We will now discuss a few implementation

considerationsfor calculating histograms.
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Figure4.3: Noiseand mixturesin histograms. Thescalar dataon the |eft represent measurementsfrom adataset containing
two materials, A and B, such as that shown in Figure 4.1. One material has measurement values near va and the other
near vs. These values correspond to the Gaussian-shaped peaks centered around va and vg in the histograms, which are
shown on their sidesto emphasize the axisthat they share. Feature space lies along this axis. In (i) we show a histogram
of afunction that has not been band limited, but does have noise. In (ii) the function has been band limited, and the
measurement transition between v to vg now appearsin the histogram as the flat region between feature space values va
and vs. The process extendsto higher dimensions. O

Implementation Considerations. For each voxel we calculate a histogram during the classifica-
tion process. We describe the histogram calculation briefly. We calculate histogramsin rectangular
bins, sized such that the width of abin issmaller than the standard deviation of the noise withinthe
dataset. Thisensures that we do not |ose significant features in the histogram.

We calculate a histogram iteratively, first initializing the bins to zero. For the region of each
voxel in the dataset we use thefirst terms of the Taylor series of p(x) to create alinear approximation
of p(x) over theregion. We then cal cul ate a pi ecewise-constant approximation of the histogram over
that region, and add that to the bins. The histogram approximation is obtained by substituting the
linearized version of p(x) into Equation 4.1 and integrating that over the small regions. This takes

into account correlation of values between different el ements of vector data
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Figure 4.4: Dataset parameters for a single material PDF, shown in (i) include c, the mean value for the material, and
s, which measures the variance of the noise (see Equation 4.2). (ii) shows corresponding parameters for a two-material
mixture basis function. s, and s; affect the slopes of the two-material PDF at either end. For vector-valued datac and s
are vectors and are the mean values and variances of the noise for the two constituent materials (see Equation 4.3). O

4.4 Histogram Basis Functions for Pure Materialsand Mixtures

In this section we present definitions of basis functions that model histograms of pure materials
and of material mixtures. These basis functions are PDFs that specify the probability that a sample
lieswithin arange of values given that it is a particular material or mixture. The parameters of the
basis functions specify the expected value, ¢, and variance, s, of each materia’s measurements (see
Figure 4.4).

We use Equation 4.1 to derive these basis functions, which we fit to the data. We then verify
that the equations provide reasonable fits to typical MRI data, which gives us confidence that our
assumptions about the measurement function p(x) were reasonable. The details of the derivations
arein Section 4.10.

For asingle material, the PDF isanormal distribution:

e =TT L _lvi-a)’
et 0.9 =11 ¢ @exp( 16 )) @2

We derive this equation by manipulating Equation 4.1 evaluated over aregion of constant material,

where the measurement function p(X) is a constant value plus additive, normally distributed noise.
For mixturesalong a boundary between two materials, we derive another equation similarly. As

withthesinglematerial, thisderivation followsfrom Equation 4.1 eval uated over aregion wheretwo
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materials mix. In this case, we approximate the band-limiting filter of the data-collection process
with abox filter, and make the assumption that the variance of the additive noiseis constant across
the region. This basis function is a superposition of normal distributions representing different

amounts of the two constituent mixtures:

1
fgounielV: €, ) = /0 fangle(V: (1 — t)cy + tez, el (4.3)

where ¢; and ¢, are the expected values of the two materias, and s the variance of measurements.
The assumption of a box filter affects the shape of the resulting PDF. We derived similar

equationsfor different filters (triangle, Gaussian, and Hamming), but chose the box filter derivation

because we found it sufficiently accurate in practice and because the numerical tractability of the

PDF in this case saved computation.

45 Estimating Dataset Parameters

In this section we describe the parameter estimation procedure for fitting material intensity PDFsto
adataset. For agiven dataset we first calculate the histogram, ha'(v), of the entire dataset.

We then combine an interactive process of specifying the number of materials and approximate
feature-space locationsfor them with an automated optimization to estimate the parameters. Under
some circumstances, users may wish to group materials with similar measurements into a single
“materia,” whereas in other cases they may wish the materias to be separate. The result of this
processis aset of PDFsthat describe the various materias and mixtures of interest in the dataset.

The optimization process estimates the rel ative volume of each material (vector o), the mean
value (vector c), and the variance (vector s) of measurements of each material. The process is
derived from the assumption that al values were produced by pure materials and two-material
mixtures. We define ny, asthe number of pure materialsin adataset and n; as the number of materia
intensity PDFs. ng > np, since ny includes any materia intensity PDF's for mixtures, as well as

those for pure materials.
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The optimization minimizes the function

g o [ [9a? e\’
g™ c 9 = / (W) dv (4.4)
where:
qv; o, c,9) = h(v) - > a?'i(v; g, §) (4.5)

j=1
The function g(v) is analogous to the difference between the expected histogram and the measured
histogram. The function w(v) is analogousto adeviation at each point v in feature space, and gives
the expected value of |g(v)|. We approximatew(V) asaconstant, and discussit further in Section 4.8.

These equations are derived in Section 4.11, using Bayesian probability theory with estimates

of prior and conditional probabilities.

4.6 Classfication: Estimating Voxel Parameters

In this section we describe the process of classifying each voxel. This process is similar to that
described in Section 4.11 for fitting the material PDFs to the entire dataset, but now we operate
on each voxel region. We use the previously computed material PDFs as fixed basis functions
and no longer vary the mean vector ¢ and variance s. The only voxel parameters are the relative
material volumes (vector ") and an estimate of the local noisein the local region (vector N) (see
Equations 4.6 and 4.7).

Over large regions the noiseis normally distributed with zero mean. However, for small regions
the mean noise is generally non-zero due to the band limiting introduced in the data-collection
process. We label thislocal mean voxel noisevalueN. Asderived in Section 4.11 the equation that
weminimizeis:

£(a" N) =§: (ﬁ)2+/ (W)Zd\/ (4.6)

i=1 N
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Object Source Voxe Size Figures

spherical shells simulated 1x1x10 mm Figure4.5

human hand GE 15T 0.7x0.7x3mm Figure 3.1, Figure 4.9
human brain GE 15T 0.8x0.8x3mm Figure4.6, Figure 4.7

Table 4.1: Dataset shown in examples with some collection parameters. O

where

ng
q(v; 0¥, N) = h"(v — N) — 3~ af(v) (4.7)
=1

and subject to the constraints

Ng
VOX VOX —
0<of* <l and)d of*=1
=1

Vector ¢ is the expected variance of the noise over the entire dataset. We estimate this as an
average of the variances of the material intensity PDFs.

With vector oV for a given voxel region and the mean value, vector v, within that region, we
solve for the amount of each pure materia contributed by each mixture to the voxel. Thisis our

output, the estimates of the amount of each pure material in the voxel region.

4.7 Results

We have applied our new techniqueto several datasets. Table 4.1 liststhe datasets, their sources,
the voxel size, and the figures in which each dataset appears. All datasets were collected with a

spin-echo or fast spin-echo protocol, with one proton-weighted and one T,-weighted acquisition.

InFigs. 4.5, 4.6, and 4.7 we compare our technique with a probabilistic approach that uses pure
materials only and only a single measurement value per voxel. The new technique produces many
fewer misclassified voxels, particularly in regions where materials are mixed due to filtering. In
Figure 4.5(iii) and (iv) the difference is particularly noticeable where an incorrect layer of back-
ground material has been introduced between the white and red regions, where multiple materials

are present in the same voxel. Figures 4.6 and 4.7(iii) also show comparative results between the
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i) Geometry of slices
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v) Original simulated two-valued data

Figure 4.5: Comparison of discrete, single-material classification (iii), and the new classification (iv). (ii) is areference
for what “ideal” classification should produce. Note the band of background material in (iii) between the two curved
regions. Thisbandisincorrectly classified and could lead to errorsin models or images produced from the classified data.
Theoriginal dataset, (v), is simulated, two-valued data of two concentric shellsas diagramed in (i). O

two methods.

M odelsand volume rendered images, as shown in Figure 4.9, also benefit because lessincorrect
information isintroduced into the classified datasets, and so the images and model s more accurately
depict the objects they are representing. With other classification techniques, models and images

contain jaggy artifacts along surfaces where materials meet.
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Figure 4.6: Discrete, single-material classification of the same slice shownin Figure 4.7. O

Implementation. Our implementation is written in C and C++ on Unix workstations. We use
a sequential quadratic programming constrained optimization algorithm [NAG, 1993] to fit hvo*
for each voxel region, and a quasi-Newton optimization algorithm for fitting ha'. The agorithm
classifies approximately 10 voxels per second on asingle HP9000/730, IBM RS6000/550E, or DEC
Alpha AXP 3000 Model 500 workstation. We have implemented thisalgorithm in parallel on these

machines, and get a corresponding speedup on multiple machines.

4.8 Discussion

We have made several assumptions and approximations while developing and implementing this
algorithm. This section will discuss some of the tradeoffs and suggest some possible directions for

future work.

Mixtures of Three or More Materials. We assume that each measurement contains values

from at most two materials, although our approach easily extends to mixtures with more materials.
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(i) Results of Algorithm
1) Original Data Classified White Matter (white), Gray Matter (gray
)
Cerebro-Spinal Fluid (blue), Muscle (red)

(iii) Combined Classified Image

Figure 4.7: Oneslice of datafrom ahuman brain. (i) showsthe original two-valued data, (ii) shows four of the identified
materials, white matter, gray matter, cerebro-spinal fluid, and muscle, separated out into different images, and (iii) shows
theresults of the new classification mapped to different colors. Note the smooth boundarieswhere materials meet and the
much lower incidence of misclassified samplesthan in Figure 4.6. O
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Figure 4.8: Basis functionsfit to histogram of human hand dataset. The bottom and left edges of the image are axesfor
each MRI value, with the intensity of the image representing the height of the histogram function. Bright spots are pure
materials, while the lines connecting the dots are mixtures. The rightmost two white dots are pure fat and bone marrow
in the hand. Thelower yellow and red dot are pure skin and muscle, respectively. The mixture between muscle (red) and
fat (white) is asalmon colored streak. The green streak between the red and yellow dotsis a mixture of skin and muscle.
Thesefitted basis functions were used to produce the classified data used in Figure 4.9 O

Figure 4.9: A volume-rendering image of a human hand dataset. The opacity of different materials is decreased above
cutting planes to show details of the classification process within the hand. O
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We chose two-material mixtures because surfaces between boundaries of pure materials are one of
the most important parts of computer graphics models. Voxels containing three-material mixtures
happen near lines where three materials meet, and are generaly much less common, because the
dimensionality of thelinesissmaller than the dimensionality of surfaces where two materials meet.

Our algorithm chooses a classification for voxels containing more than two materials from the
set of 2-material mixtures. Generally, the two largest materias in the voxel influence the choice,

producing a dataset with small artifacts where three or more materials come together.

Partial Mixtures. We note that the histograms h'®*(v) for some voxel regions are not idealy
matched by alinear sum of basis functions. We address two problems here.

The first problem is that, within a small region, the assumption that we still have normally
distributed noiseis no longer valid. N modelsthe fact that the noise no longer averages to zero, but
we do not attempt to model the change in the shape of the distribution as the region size shrinks.

The second problem is related. A small region may not contain the full range of values that
the mixture of materials can produce. As a result, the histogram over that small region is not
modeled ideally by alinear combination of pure materia and mixture distributions. We investigate
an additional parameter to address this problem in Chapter 5.

We postul ate that these two effects weight the optimization process such that it tendsto make N
much larger than we expect. Asaresult, we have found that setting the normalization factor, w(v),
to approximately 30 times the maximum value in hV%*(v) gives good classification results. Smaller
valuestendto allow N to movetoo much, and larger valueshold it constant. Without these problems
we would expect the agorithm to work best for values of w(v) equal to some small percentage of

the maximum of hV%*(v). Once again, we address this problem more effectively in Chapter 5.
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4.9 Conclusion

We have developed a new classification algorithm within the Bayesian framework described in
Chapter 3. The new agorithm uses histograms taken over small voxel regions to represent the
information within a voxel, and models these histograms as alinear combination of basisfunctions
for pure materias and for mixtures of materials. The pure material basis function is a normal
distribution, but the mixture basisfunctionisnew and isderived in Section 4.10. The new a gorithm
classifies MRI data better than previous algorithms, especially near boundaries between materials,
because the histogram incorporates more information about the voxel than a single measurement

and because the histogram model explicitly incorporates boundaries between materials.

4.10 Derivation of Material PDFs

In this section we derive materia PDFs that we use as basis functions (f;) for fitting histograms.
We derive two forms of basisfunctions: onefor single, pure materials and another for two-material

mixtures (which arise due to sampling). Here is Equation 4.1, the histogram equation:

hR (v) = / RO8(p(X) — v)dx (4.9)

Note that if p(X) contains additive noise n(x; s) with a particular distribution ks(v; s), then the
histogram of p with noiseisthe convolutionin v of the normal distribution k,(v; s) with p(X) — n(x; )

(i.e, p(X) without noise). We represent the convolution in v with the operator ,. Thus

W) = [RE)E(p() — v)dx

kn(V; ) #v [ R(¥)6((p(¥) — n(x; s)) — v)dx

(4.9)
h® (v)
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4.10.1 PureMaterials
For asingle pure material we assume that the measurement function has the form:
psingle(X) = C+N(X; 9), (4.10)

where c is the constant expected value of a measurement of the pure material, and n(x; s) is the
normally distributed noise at x with variance s.

The basis function we use to fit the histogram of the measurements of a pure material is

fingle(V; C,S) = [ R(X)6(psingle(X) — V)dX
= [ R(¥é(c+ n(x; s) — v)dx

(4.11)
=kn(v; 9) * [ R(X)d(c — v)dx

=[P = exp (—% (%)z)

Thus fgngie(V; €, ) is a normal distribution with mean ¢ and variance s. We assume the noise is

independent in each element of vector-valued data, which for MRI appears to be reasonable.

410.2 Mixtures

For amixture of two pure materials, we assume the measurement function has the form:

pdouble(X) = Ldouble(X; C1, C2) + N(X; 9) (4.12)

where {gounle @pProximates the band-limiting filtering process, a convolution with a box filter, by
interpolating the values within the region of mixtureslinearly between c; to ¢, the mean valuesfor

the two materias.
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faounie(V; C,S) = [ R(X)(pdoupie(X) — V)dx
= [ R(X)6(Ldounle(X; €1, C2) + N(X; S) — v)dx
= kn(V; 9) * [ R(X)6 (Caouble(X; C1, C2) — V)dx (4.13)
= [ (v; ) # 6((1 — t)ey +tcp — V)t

= fol kn((1 - t)cy +tcp — v; S)dt
4.11 Derivation of Classification Parameter Estimation

In this section we derive the equations that we optimize to find material PDF parameters and to
classify voxel regions. We use Bayesian probability theory [Loredo, 1989] to derive an expression
for the probability that a given histogram was produced by a particular set of parameter valuesin
our model. We maximize an approximation to this “ posterior probability” to estimate the best fit
parameters:

maximize P( parameters | histogram) (4.14)
We use this optimization procedure for two purposes:

¢ Find material PDF parameters. Initialy, we find parameters of basis functions to fit
histograms of the entire dataset h?!. This gives us a set of basis functions that describe the

pure materials and mixtures.

¢ Classify voxel regions. We fit a weighted sum of the basis functions to the histogram of a

voxel region hV?*, This gives us our classification in terms of the weights, «.

The posterior probabilitiesP¥' and PY** share many common terms. In the following derivation we

distinguish them only where necessary, using P where their definitions coincide.

4111 Definitions

Tables 4.2 and 4.3 list definitions that we use in the following derivations.
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Term
N
Ny
(8%

Cc
S

N
Pi.6
haII (V)
fvox (V)

Dimensionality
scalar

scalar

"

Nf X Ny
Nf X Ny

Ny
scaars
R"v - R
R™ - R

Definition

number of materials and mixtures

dimensions of measurement (feature space)
relative volume of each mixture and material
within the region

mean of material measurements for each materia
variance of material measurements for each
material

mean value of noise over the region

arbitrary constants

histogram of an entire dataset

histogram of atiny, voxel region

Table 4.2: Definitions used in derivations. O

| Probabilities (using Bayesian terminology [Loredo, 1989]): |

P(a,c,s,N|h)
P(a,c,s,N)
P(h|a, c,s,N)
P(h)

posterior probability (we maximizethis)
prior probability

likelihood

global likelihood

Table 4.3: Probabilities (using Bayesian probability terminology [Loredo, 1989]) O

4.11.2 Optimization

We perform the following optimization to find the best fit parameters:

maximize P(«, ¢, s, N|h)

78

(4.15)

With P = P3| we fit material PDF parameters ¢, s, o3 to the histogram of an entire dataset

hal(v). With P = PY%, wefit oY%, N to classify the histogram of avoxe region hVo%(v).

4.11.3 Derivation of the posterior probability P(«, ¢, s, N|h)

We start with Bayes' Theorem, expressing the posterior probability in term of the likelihood, the

prior probability, and the global likelihood.
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P(a7 C7 S7 N)P(h|a7 C7 S7 N)

P(e, c,s,NJh) = P

(4.16)

Each of theterms on the right-hand side is approximated below, using p1.. g to denote constants

(which can be ignored during the optimization process).

Prior Probabilities. We assumethat «, ¢, sand N are independent, so
P(a,c,s,N) = P(a)P(c, )P(N) (4.17)

Because the elements of « represent relative volumes, we require that they sum to 1 and are
positive.
0 if Yl 71
P@=4 0 ifaj<Oora;>1 (4.18)

p1 (constant) otherwise

We use a different assumption for P(c, s) depending on whether we are fitting ha! or hvo%. For

fitting ha! (v), we consider all values of ¢, sequally likely
PAl(c,s) = ps (4.19)
For fitting hV%, ¢, sarefixed at ¢, ° (the values determined by the earlier fit to the entire data set).
PY%(c,s) = 6(c — 0, s— &) (4.20)
For a small region, we assume that the noise vector, N, has normal distribution with variance

Ni )2

PYX(N) = pog 21 (71 (4.21)

For alarge region, the mean noise N should be very close to zero and hence P3'(N) will be a delta
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functionat N = 0.

PAI(N) = §(0) (4.22)

Likelihood. We approximate the likelihood P(h|«, ¢, s, N) by anadogy to a discrete normal dis-
tribution. We define q(v) to measure the difference between the expected histogram for particular

a, ¢, s, N and a given histogram h(v)

Ng
q(v; o, ¢,s,N) =h(v— N) = > o4fi(v; c.9) (4.23)
=1

Now we create a function by analogy to a normal distribution. w(v) is analogousto the variance of

g a each point of feature space.

av;e,c,5,N) Y2dv

P(hla, ¢, s, N) = pse 2/ (5 (4.24)

Global Likelihood. Note that the denominator of Equation 4.16, P(h) is constant. It normalizes

the numerator.

Assembly of Terms.

Using the approximations discussed above, we arrive at the following expression for the posterior

probability:

Ni

2 v,a,c,s,N
P(a, ¢, s,N|h) = psP(a)P(c, 5) (e_ > G ) (e_ J& w(v>_N))2d") (4.25)

For fitting h?!, the mean noise is assumed to be zero. The coefficient of the exponential are

constant with respect to the parameters, so maximizing Equation 4.25 is equivalent to minimizing
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the argument of the exponential to find the free parameters (o', ¢, 5):

. 2
gal(od ¢ g = / (M) dv (4.26)

w(v)

subject to P(a@) # 0.

For fitting V%%, the parameters ¢ and s are fixed. Once again, the coefficients of the exponential
are constant with respect to the parameters, so maximizing Equation4.25 isequival ent tominimizing
the argument of the exponential to find the free parameters («V%%, N):

X ) = 3 (ﬁ_‘)2+ / (W)Zdv (4.27)

i=1 N

subject to P(a¥%) # 0.
Asdescribed in Equation 4.6, Section 4.6, Equation 4.27 is minimized to estimate volumeratio

densities «V°% and the mean noise vector N.



82

Chapter 5

Bayesian Classification Algorithms B and

C: Boundary Distance

In this chapter we describe two new cl assification techniques devel oped within the Bayesian frame-
work of Chapter 3.

The techniques we develop here are similar to that of Chapter 4; as before, the voxd-info
consists of histogramstaken over voxel regions. The significant differences between the techniques
are that we use new histogram basis functions and that the dataset parameters are estimated using a
different algorithm.

The new histogram basis functions model voxels near boundaries between two materials. The
histogram model has a single parameter: the distance from the center of the voxd to the boundary.
The basisfunctionsfit histograms of real datasets better than the partial volume mixturesalgorithm,
but at the cost of somewhat greater computational expense. The resulting distance parameter is
particularly useful in making models of objects because it measures the distance from surface

boundaries between materials. These boundaries are generally boundaries between parts of objects
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or between objects and their surroundings.

We present the modified assumptions in Section 5.1, the new histogram basis functions in
Section 5.2 and the dataset- and voxel parameter estimation in Sections 5.3 and 5.4. Section 5.5
shows results, Section 5.6 discusses them, and Section 5.7 concludes. Detailed derivations are in

Section 5.8.

5.1 Assumptions

The first three and the fifth assumptions for this technique are identical to those in the previous

chapter.

€. Discrete materials.

€. Normally distributed noise.
e3. Sampling theorem is satisfied.
6,5 Uniform tissue measurements.

Asoutlined in Section 3.3.4, we replace assumptions ey, and eqyg as follows.

epa: Pair-wisemixtures. Rather than assuming that each voxel volume can contain some of every
material, we assume that each voxel volume consists of either a pure materia or of two pure

materia s separated by a boundary.

&ps: Gaussian filtering. The histogram basis function derivation uses the assumption that the
samplingfilter kernel is approximately Gaussian. Thisassumption helps us derive atractable
calculationfor thenew histogram model of boundary-parameterized mixturesand also models

the actual collection process better than box filtering.

&y7. Known materials. We know the number of materials and can identify samples from each

material and mixture within the data.



5.2 Histogram Basis Functions 84

5.2 Histogram Basis Functions

Once again we use two types of histogram basis functions, one for pure materials and one for
mixtures of materials. The basis function for pure materials remains a normal distribution. The
basis function for a mixture now has an additional parameter that defines the distance from the
center of avoxel to a boundary between materials (see Figure 5.1).

From the assumptions and Equation. 4.1 we derive the equation for a pure-material basis
function. Because the data collection process band-limits the noise, and because we are looking
a histograms over very small regions, the noise is not normally distributed. We divide the noise
into two components, one that is constant over avoxel (with mean ¢ and standard deviation o over
the dataset), and one that is normally distributed around the constant component (with mean 0 and
standard deviation s over avoxe). The equation for asingle material, then, isanormal distribution

with center ¢+ N and variance ¢2;

. . _nv 1 _} ny V—(C+N) 2
et o9 =[] @exp( () ) 51

Dataset parameters for thisbasis function are c, s, and . Because N is constant within avoxe,
but varies over the dataset with anormal distribution, o aso becomes a dataset parameter.

From the assumptions and Equation. 4.1 we derive the equation for a mixture basis function.
The function uses the same parameters for its pure materials components and adds two additional

parameters d and ky, as shown in Figure 5.1. See Figures 5.2 and 5.3 for examples.

fboundary(V; dv N7 C, S, kW) =

(5.2)
ONz=
9+ (G5 = ) - H -t - 520) [ 042
_ _ —_2v . .. . . .
where kg(v) = erf 1(%) and H(x) isthe Heaviside, or step, function. The derivation follows

from Equation. 4.1 evaluated over aregion centered at distance d from a boundary between two
materias. The boundary is assumed to be planar and the function low-pass filtered uniformly in all

directions so that the sampling theorem is satisfied. k,, depends on the width of the sampling kernel
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(i)

(i)

Figure 5.1: We start from the assumption that in a real-world object each point is exactly one material, asin (i). The
measurement processcreates samplesthat combinemeasurementsof different materials. From the sampleswe reconstruct
a continuous, band-limited measurement function p(x). Points P, and P- lie inside regions of a single material. Point
P3 lies near aboundary between materialsin (i), and soin (ii) Ps is shown with a parameter d that indicates how far the
center of the surrounding voxel is from the boundary. The parameter k,, shows the width of the region where the pure
material measurements mix together and is dependent on the width of the sampling kernel. The grid lines show voxel

boundaries and how they relate to the regions. O
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Figure 5.2: The shapesof histogram basis functions, fuoundary (V), for different values of d, the distance from the boundary
to avoxel center. Note that the shapesapproach normal distributions as d moves avay from 0. The histograms shown are

for scalar data and are 1-dimensional. Figure 5.3 shows histogram basis functions for vector-valued data. O
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f boundary(v1, v2)
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c1=(5,5), c2=(15,25), s=(3,5), Kw=0.4

Figure 5.3: The shapes of fpoundary (V) histogram basis functions for vector-valued data. Three different values of d, the
distance from the boundary to a voxel center, are represented. Figure 5.2 shows examplesfor scalar data. O

used to create the samples. Section 5.8 presents amore detailed derivation.
The parameter d isestimated individually for each voxel we classify as described in Section 5.4.

kw is estimated once for an entire dataset as described in Section 5.3.

5.3 Estimating Dataset Parameters

In this section we describe the process of estimating the material parameters that are constant
throughout a dataset. For each pure material the dataset parameters include the expected center
value of thevoxel, c; the expected deviation of ¢ from voxel to voxel, s, the expected deviation from
c of values within avoxel, o and w(v). For material mixtures the dataset parameters also include
kw, the sampling kernel width. w(v) isan analog of the standard deviation of a histogram from the
expected value of the histogram. We discuss thisfurther bel ow.

We estimatethese parameters from several interactively selected sets of voxels. Each set consists

of voxels containing a single pure material or of voxels near a boundary between two known pure
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materials.

For each voxel in a set representing one pure material, we calculate a mean and deviation of
the values within the voxel. The mean value of all of the voxel meansisc. The deviation of al the
voxel mean valuesiss. Themean of al the voxel deviationsiso.

For each voxel in a set representing a mixture, we fit fooundary() to the histogram over the voxel
allowing d and ky, to vary. Thisgives us avaue for k. We use the mean value of these voxel ki

valuesfor classifying voxels over the entire dataset.

5.3.1 Non-uniform Material Signatures

Our third classification al gorithm differsfrom the second only inthe estimation of dataset parameters.
For the third agorithm, the material parameter ¢, which measures the expected value of a materia
within a dataset, is defined as afunction c(x) over theimaging volume. We model ¢(x) withasimple
parameterized function of space according to our knowledge of the sources of intensity changes
across an MRI dataset, and then fit that function to the interactively chosen points as described
above. sand o are calculated as for the second algorithm, but using c(x).

When estimating the voxel parameters as described in the next section, we can evaluate c(x) for

agiven voxel and use that valuein finding the voxel parameters.

5.4 Estimating Voxel Parameters

With estimates for dataset parameters we can estimate the voxel parameters for each voxel in a
dataset. One voxel parameter, ap, is discrete and determines which material or pair of materias
avoxel contains. We break the classification process up into one optimization over a continuous
domain for each material or pair. We then choose the one that fits best.

The optimization process for a particular pure material minimizesthe equation

Epure(N) = i (M)z _,_i (h(Vi -N) - fpure(\/i))z (5.3)

izt i i=1 w(vi)
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where ny, isthe number of pointsin feature space over which we evaluate the difference between
the histogram and its model. The remainder of the equation is a series of squares of ratios between
differences and their expected values. The expected value of each termis 1, and so the expected
valuefor £ isn, + hy, which gives us ameasure of how well abasis function fits avoxel histogram.

We choose a set of feature space points on aregular grid with spacing smaller than the smallest
o. Any pointson the grid with positive histogram values are used in the summeation.

The optimization process for a particular mixture minimizes the equation

Evoundary(N, d) = i (M)z + i (h(Vi - N) - fboundary(\/i))z (5.)

i=1 ! i=1 w(vi)
The derivations of Equations 5.3 and 5.4 are described in more detail in Section 5.8.
Values from Equations 5.3 and 5.4 cannot be compared directly, as is shown in Section 5.8.
Instead, we convert them to probabilities with the following equations and compare the results at

the optimized pointsto choose the most likely materia or combination.

. _ 1 1 <
Ppure(N) = ny+n, e 2 EPUFE(N) (5 5)
(2r) 2 [1% 0 [T W)

1

(2r) 7" [T, o 1%, W)

Phoundary(N, d) = & 2oy (N.0) (5.6)

5.5 Results

We have classified simulated MRI data with the boundary distance agorithm and compare them
with results from severa other algorithmsin Figure 5.4. The simulated data that we classified is
shown in Figure 5.4(ii) with Figure 5.4(iii) illustrating what an ideal classification algorithm would
produce. Discrete classification, using vector data, but only a single measurement point per voxel
and assuming only pure materials, produces the results in Figure 5.4(iv). Note the jaggy edges

and the band of misclassified data for materia 3 along the boundary between materials 1 and 2.
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(i) Ge?metry of (i) Raw data
slces

Mat. 1:

Mat. 2:

Mat. 3:

(ii1) “Ideal” (iv) Discrete (v) Partial volume (vi) Boundary
classification classification mixture distance
(vector) classification classification
(vector) (scalar)

Figure 5.4: The boundary distance algorithm is compared to other algorithms in classifying simulated MRI data. (ii)
shows the simulated data, which contains three different materials. The geometry that the data measuresis shownin (i).
(iii) showswhat an “ideal” classification algorithm should produce and (iv)-(vi) show results from different algorithms.
Note that the new algorithms (v) and (vi) produce results most similar to the ideal case, and that (vi) does so even with
scalar data. O
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Figure 5.4(v) and Figure 5.4(vi) show the partia volume mixtures algorithm from Chapter 4 and
the boundary distance algorithm from this chapter. Note that even with scalar data, the boundary

distance algorithm achieves results very close to theidea case.

5.6 Discussion

Ambiguousclassification. For avoxel thatiswell withinaregion of pure materia A, thealgorithm
sometimescorrectly classifiesthevoxel aspuremateria A, and sometimesclassifiesit asamixtureof
Aand avery small amount of some other material. Both solutionsare physically reasonabl e because
the mixture basis functions approach a normal distribution as the boundary distance parameter d
moves away from zero.

Similarly, two different mixtures, each containing material A, can match avoxel that iswithin

aregion of pure material A. Again, the choiceisnot critical.

Sensitivity to interactively selected material classes. The results of the algorithm are highly
dependent on the materia points selected interactively to represent each pure material and each
pair of materiadls. These points must be selected carefully, and should come from a set of points
that actualy represent a single consistent material. Representing points from two materias as one
material can create a situation where the distributions of the sample values do not match a normal
distribution, and the classification results are |ess accurate.

The dgorithm could verify that the selected points are normally distributed to identify the

problem and report it to the user.

Sensitivity to contrast between materials. The classification is sensitiveto the contrast-to-noise
ratio between different materials. If thisratio istoo small, materials cannot be distinguished. This

requirement is fed back to the data-collection process described in Chapter 2.
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Computational expense. The implementations described in this chapter are computationally
expensive. The optimization process must be run on each voxd in a dataset. At ten voxels
per second, a medium-sized dataset of 256 x 256 x 64 voxels runs in about 5 days. Through
approximationsit may be possibleto reduce thistime significantly.

The agorithm processes each voxe independently, and so is highly amenable to a domain-
decomposition parallel solution. In fact, we have run it on anetwork of ten HP 9000/700 and DEC

Alphaworkstations and gotten a speedup of almost ten in classifying medium to large datasets.

More sophisticated geometric basis functions. The basis functions that we have developed
model the two most common geometric cases. sampleswithin regionsof pure material and samples
near surface boundaries. Additional basis functions, however, could model other geometries and
create more accurate models. Examples include samples near edges where three materials come
together, or points near membranes that are thinner than the sample spacing, where, again, three

materials would have an effect on the measurement.

I ncor porating additional global information. Except for the interpolation of samples, we cur-
rently classify each voxe without regard to its neighborsand without directly using theinteractively
selected representative points for each material. Both types of information could be incorporated

into the prior probability estimates to influence the classification process.

5.7 Conclusion

We have presented two new classification algorithms, one a variation on the other, built within the
Bayesian framework we described in Chapter 3. The algorithms are based on a more accurate
model of the MRI process than the agorithm of Chapter 4, and so produce better results, but are

computationally more expensive.
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5.8 Detailed Derivations

This section derives the boundary distance histogram basis functions for pure materials and for

mixtures as well asthe prior probability optimization equations used in Section 5.4.

5.8.1 PureHistogram Basis Function

The derivation for pure material basisfunctionsisidentica to that of Ch. 4 andisin Section 4.10.1.

5.8.2 MixtureHistogram Basis Function

For a sample taken near a boundary between two pure materias we start with an object that spans
all of 3-space and that has two materials separated by a planar boundary. Because we are going to
use arotationally symmetric Gaussian sampling kernel, we can perform a change of coordinates on
our object to makethe planar boundary pass through the origin and be perpendicular to the xp-axis.

The object functionis:

c ifxg<O
vy ={ e (5.7)
C ifxg>0
Our measurement functionis:
poor®) = | [ [ Ko GkGu(x ~ dsetiadso +nix 9 (5.8)

where k(x) is the 1-D Gaussian sampling kernel. Its width is determined by an implicit parameter

kw. V(X — X) isindependent of x; and X», SO

prouni0) = [ Kanix—5) ([ [ Kktio)diodsc ) dio + ;9 (5.9)
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Theterm in parentheses is one, and so:
o) = | KoV — Xo)dio + n(x; 9 (5.10)

We assume a Gaussian kernel function:

k() = #e‘<ﬁ)2 (5.12)

By evaluating the integrals we find:

S22 KXo)V(Xo — Xo)dXo + N(X; S)
= ¢ [0, k(Xo)d%o + C2 [0 k(%0)d%o + N(X; 5) (5.12)

= L(co+ o+ (co — co)erf(kuXo))) + N(X 9)

Pooundary(X)

This measurement function can now be substituted into Equation. 4.1 to derive the boundary

basis function:

fooundary(V; d, N, €, S, k) J R(X)é (fooundary(X) — V)dx
JRMS(3(c2 + c1 + (c2 — cr)erf (kwXo))) + n(x; s) —v)dx  (5.13)

kn(V; ) #v [ R(Q8(3(C2+ c1 + (C2 — cr)erf (kuxo))) — V)l

We define the region R (X) as arectangular solid k;, on a side and distance d from the boundary

a 0. Because the integrand depends only on X, we can reduce thisto a single integral

+a

d 2
=9+ [ 8 (0a + 1+ (2 — co)at(k) — Vide (514
k(v ) + (H(d+ K ke gk "e("))) ety ) (5.15)
’ 2 ke 2 kv '/ |(c2— Co)kw

_ _ —2v . .. .
where kg(v) = exf 1(%) and H(x) isthe Heaviside, or step, function.
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0 ifx<0
H(X) = (5.16)

1 ifx>0

We refer to the right operand of the convolution as r(v)

O
rv) = ((H(d+%— % —H(d—%— keé;/))) (Ce;e_ ggkw) (5.17)
fooundary(V) = kn(V) * (V) (5.18)

Implementation Consider ations
Our implementation evaluates this function by creating a piecewise-linear approximation to r(v)
and summing the convolutions of the linear pieces. r(v) isnon-zero only between

1 kn

5(C2+ 1+ (c2 — cjerf (kn(d + ) (5.19)
and

1 kn

5(C2* 1+ (c2 — cr)erf (kn(d — 7)) (5.20)

We evauate r(Vv) at regularly spaced points between those endpoints, scale the resulting values to

preserve the tota integral, evaluate the convolution, and sum the results.

5.8.3 PureMaterial Parameter Estimation

We wish to be able to evaluate

P(N)P(hIN)

PNI = =5

(5.21)

where histhe histogram over avoxel and N is the voxel parameter for a pure material.
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Prior probability isdefined as

-
p(N) = o 1 — e % ZL(Z_.) (5.22)

(2m) % [T o
Likelihood isdefined by analogy to amulti-dimensional normal distribution. We choosen,, points

infeature space and cal cul ate the difference between the histogram model and the histogram at those

points.
—Nj)—fpure(vi 2
PNy = Lo P () (5.23)
(27)2 [Ti%; w(vi)
Global likelihood isaconstant asin Section 4.11.3.
Assembly of prior probability.
_1fs &)2+ZFP i =0Tt 2)
P(N|h) = ! 2< () (5.24)

P() (2r) 2" 1 o TI™, ")

Because the coefficient of the exponential is constant with respect to the arguments of P(N|h),

maximizing P(N|h) is equivalent to minimizing:

EoueN) = Zl (%) 2 +Zl (= I\vlv)(v_ ) ) 2 (5.25)

In comparing the optimization result among different materials, we convert to probabilities,

neglecting the global likelihood, which is not afunction of the material.

R _ 1 1 N
Ppure(N) = ny+n, e_EEpUFE(N) (526)
()77 TI o TT w(vi)

5.84 Material Mixture Parameter Estimation

We wish to be able to evaluate
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P(N, d)P(h|N, d)

P(N,d|h) = P (5.27)
where N and d are voxel parameters and h is the histogram over avoxel.
The derivation follows that of the previous section.
Prior probability isdefined as
P(N, d) = P(N)P(d) (5.28)

P(N) isidentical to Equation 5.22.
Effects from a boundary do not occur at significant distances from the boundary. We define
significant distance as 3 times the width of the spatial sampling kernel and create a probability

density function for P(d) that integrates to one:

T if -3<d<3
P(d) = (5.29)
0 otherwise
Likelihood isdefined in the same manner as Equation 5.23.
1 (0= M)~ fooundary ) ) 2
P(hIN, d) = — L e ZZM( He ) (5.30)
(2m)2 [Ti2, W(vi)
Global likelihood isaconstant asin Chapter 4.
Assembly of prior probability.
1N (N2, 5 (PO =)~ Toounday (1) ) 2
P(N,d|h): 1 e 2 I=1<0i> +Z|:1( w(vi) ) (531)

P(h) (27)™7" TT™, o T, w(vi)

Because the coefficient of the exponential isconstant with respect to the arguments of P(N, d|h),

maximizing P(N, d|h) is equivaent to minimizing:
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Eboundary(N, d) = i (M)z + ib: (h(Vi —N; )W—(V:‘;mundav(vi)) ? (5.32)

i=1 !

i=1
In comparing the optimization result among different materials, we convert to probabilities,

neglecting the global likelihood, which is not a function of the material mixture.

. _ 1 1
Pboundary(N, d) = ——= g 2Eboundary (V) (5.33)
@)~ 2" T, o TI w(v)
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Applications

Thefollowing two chapters describe computer graphics applicationsthat use the
data collection and classification techniques of the earlier chapters. Chapter 6
describes a taxonomy of computer graphics models and Chapter 7 describes a

new algorithm for directly volume-rendering deformed volume data.

98
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Chapter 6

Model Building

A magjor unsolved problem in computer graphics is that of making high-quality models. Tradi-
tionally, models have consisted of interactively or agorithmically described collections of graphics
primitives such as polygons or patches. The process of constructing these models is painstaking
and often misses features and behavior that we wish to model.

In this chapter we present a taxonomy of computer graphics models that can be created from
classified sampled MRI data. We use results from the earlier chapters to create examples of both
static and dynamic models of objects from MRI measurements. These new results illustrate the
utility of the data-collection and classification processes.

Many of the goals used in developing the data-collection and tissue-classification algorithms
derive from requirements of the model-extraction process, providing feedback to thoseearlier stages

of the pipeline.
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Real World Objects

Data Collection
v

Sampled Volume Data (MR, CT)

Classification

Identified Materials

Model Volume Rendering/
Building Visualization
Geometric/Dynamic Models Images/Animation

Figure 6.1: Model-building and visualization context. The model-building and visualization stages are the final stage in
the pipeline for extracting computer graphics models from MRI data. O

6.1 Taxonomy of Computer Graphics M odels

Our modeling taxonomy splits models into those with regions of constant material and those with
materials that vary continuously. Constant-material models, from which our examples are taken,
can be divided into static and dynamic.

Within each category we define both surface models and volume models. Surface models
capture the shape of an object showing the boundaries where pairs of materials meet. Volume
model s incorporate information about the internal structure of each region. The volumes are solid
regions of space that exhibit a common appearance and behavior.

Dynamic model scapture not only the shape, but characteristics of the behavior of an object—how

it moves and changes shape in the course of performing some task. For many objects, different
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Uniform-Material Models
Static Dynamic
Surface | lobster (Figure 6.2)
tooth (Figure 6.4)
“bear” (Figure 6.6)
Volume | bee(Figure6.7)  jade plant (Figure 6.9)
banana (Figure 6.10)

Table6.1: Examplesfrom within our taxonomy of computer graphicsmodels of objectswith regions of relatively uniform
materials. O

materials within an object have a strong influence on their behavior. For example, a human hand
modeled as only skin behaves differently than one modeled with bone, muscle, fat, and skin. MRI
volume data provides us with internal measurements. Our dynamic models are all volume models,
but surface models, representing cloth, for example, have also been developed [Weil, 1986].
Table6.1 showsthepart of the taxonomy from which we draw our examplesand givesreferences

to figures illustrating the different categories.

6.2 Modeling Examples

Our surface-based models are calculated as isosurfaces of continuous functions. Isosurfaces of a
function over space are analogs to isocontours of afunction over aplane. The functionsfrom which
we extract our surfaces are reconstructed from the sampled data produced by our classification
algorithms, and so must satisfy the Nyquist sampling theorem.

By operating on classified data we can extract surface models where the surfaces define the
boundaries between materials. Because the histogram basis functions from our classification
techniques model the boundaries between materials, the parameters of the basis functions provides
us with a physical basisfor where the surfaces lie.

Classified data serves as a volume model. The relevant spatia information is encoded in
that data, and can be extracted with rendering and simulation algorithms. Volume rendering is

particularly useful because it integrates over an entire volume and tends to reduce image artifacts
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Figure 6.2: A rigid model of the external surface of alobster. MRI data of alobster was collected, each voxel classified
using the partial volume mixtures algorithm, and then a polygonal isosurface of the surrounding material calculated. The
underside of the lobster is shownin Figure 6.3. O

caused by noisein collected data.
We show a collection of models, beginning with static surface models and progressing through

static volume model's to dynamic volume models.

6.2.1 Static Surface Models

Surface model scapturethe shapeof anobject. Using dataclassified with the partial-volumemixtures
algorithm (Chapter 4), we approximate the boundary for each material as the point where the local
density function is 0.5. For data classified with the boundary distance algorithms (Chapter 5) we
similarly approximate the boundary as the locus of points where the boundary-distance functionis
0. Theisosurface at these levelsis the best approximation to the correct surface given the sasmpled
data

Ineither case, weusean algorithm such asmarching-cubes|Lorensen and Cline, 1987], availablein
thevisualization software product AV S[Upson et ., 1989)], to produceapol ygon mesh approximation

to the boundary given sampled data. We a so use standard polygon rendering algorithmsto generate
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Figure 6.3: Underside of the rigid model shownin Figure 6.2. O

Figure 6.4: A geometric model of tooth dentine and enamel created by collecting MRI datausing atechnique that images
hard solid materials, classifying dentine and enamel in the volume data with our new partial volume mixtures algorithm.
Polygonal isosurfaces define the bounding surfaces of the dentine and enamel. O
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Figure 6.5: MRI data of a human molar collected using a new technique that images solid materials. O

images from polygon meshes.

Figures 6.2 and 6.3 show the top and underside of a lobster model extracted from classified
MRI data. Three interleaved, multi-slice, two-echo acquisitions were combined to produce data
satisfying the Nyquist sampling theorem. The datawere classified with our partial volume mixtures
algorithm, and an isosurface defining where the surrounding material ended was used to represent
the surface of the animal. Note the detail in the model, particularly on the underside.

Figure 6.4 shows images of a surface model of a human molar tooth. The surface model was
created from MRI data (Figure 6.5) collected using an MRI technique that is capable of imaging
hard solids [Ghosh et ., 1995] [Gravina and Cory, 1994]. Our partial volume mixtures classification
algorithm identifies three materials, enamel, dentine, and the surrounding air, despite the similar
valuesfor enamel and air in the sampled data. We cal culated polygonal isosurfaces for the dentine
and enamel and rendered both together, to show the entire tooth, and the dentine alone, to show the
dentine/enamel boundary.

Figure 6.6 shows asurface model created from aplastic bear. The plastic bear was prepared for

data acquisition by embedding it in agar to provide MRI contrast between it and its surroundings.
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Figure 6.6: Polygonal model extracted from MRI data of a plastic bear. The plastic does not provide signal with
conventional MRI acquisition techniques, so the bear was set in agar to provide contrast between it and its surroundings.
A polygonal isosurface extraction captured the surface geometry directly from the data because only agar and plastic
needed to be identified. The texture on the geometric model was specified using a new technique that spreads small
patches across the surface maintaining orientation between neighbors to attain a combed appearance [Fleischer et al.,
1995]. O

Three multi-slice datasets consisting of 3mm slices were collected, each offset by 1mm from the
others, and the results interleaved to produce data satisfying the Nyquist sampling theorem. Only
two materials are present in the dataset, so a polygonal isosurface was extracted directly from the
data. A new algorithm to specify surface texture [Fleischer et ., 1995] spread patches of “fur”
across the surface and maintained a consistent local orientation of the patches to produce a combed

appearance.

6.2.2 Static Volume Models

Classified volume data serves as a model of the underlying objects, and can be rendered with
volume-rendering algorithms[Drebin et ., 1988] [Levoy, 1988] [Upson and Keeler, 1988].

Figure 6.7 showsvolume-rendered images of amodel of abee. Themodel consistsof MRI data
classified with the our partial volume mixtures algorithm. The image on the left shows primarily
the surface by using opague materials. The image on the right shows the materials in different,

transparent colors.



6.2 Modeling Examples 106

Figure 6.7: Classified MRI dataof abee rendered with opaque materials on the left and semi-transparent materials on the
right. The volume datawas classified with the partial volume mixtures algorithm. O

Figure 6.8: Volume-rendered images of human hand model from the front and back, with musclein red, fat in yellow,
and tendon in white. Multi-slice datawas classified with the partial volume mixtures algorithm. O

Figure 6.8 shows volume-rendered images of a classified human hand dataset. Tendon is shown
in opaque white, muscle in semi-opague red, and fat in transparent yellow. To better show the

internal structure, the skin has not been rendered.

6.2.3 Dynamic Models

We represent dynamic models in two different ways. physicaly-based deformations and
kinematically-specified deformations. Much related work has been devoted to representing flexible

bodies for computer graphics, e.g., [Platt and Barr, 1988],[Baraff and Witkin, 1992]. We have chosen
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Figure 6.9: Results of collecting MRI data of a jade plant, classifying each voxel in the volume data with the partial
volume mixtures algorithm, creating a flexible model, and simulating a twisting deformation of the model over time. O
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Figure 6.10: Results of collecting MRI data of a banana, identifying peel and flesh in the data, creating solid parts for
each material information, and flexibly deforming the outer material to peel it. We used the partial volume mixtures
classification algorithm. O

a simple mass points and springs representation, but more complex and accurate finite element
method representations would &l so be possible.

Our physically-based deformations consist of a collection of mass points and springs connected
in aregular, 3-D, rectangular grid surrounding the object. The strengths of the springs and mass
values at the points are chosen based on the materials within each grid rectangle. By exerting
forces on selected mass points, we cause deformations that simulate the behavior of the modeled
materials. The deformations are specified via control points [Sederberg and Parry, 1986] that take on
the positions of the simulated mass points.

Figures 6.9 and 6.10 show examples created with this technique. In Figure 6.9 we show three
frames from an animation in which an initial twisting force was specified for al of the points.
Frames were generated as the model returned to equilibrium. In Figure 6.10 forces were applied
to points of the banana peel near its apex to pull the peel away from the flesh. The banana was

measured with MRI and the data classified to distinguish peel from flesh. Four frames from the
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Figure 6.11: This figure shows the results of collecting MRI data, classifying each voxel in the volume data using the
partial volume mixtures algorithm, and creating solid parts using the material information. We deform the outer layersto
peel the skin back showing internal structure. Chapter 7 describesthe rendering process used to create thisimage. O

animation are shown.

The kinematically-specified deformations are defined with the sametype of rectangular control-
point grid. Instead of using simulation output, however, we specify the control pointskinematically.
Figure 6.11 shows an example where the skinis peeled back from the palm of a human hand model
to show interna anatomy. Internal materials are shown in different colors to differentiate them.
The hand dataset was classified into air, tendon, muscle, fat and skin. These images were rendered
directly from the volume dataset and the description of the deformation using a new algorithm

detailed in Chapter 7.
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6.3 Conclusion

Through a sequence of examples we have shown that classified MRI volume data can be used to
create both static and dynamic models. While the resolution of conventional MRI datais somewhat
less than that of surface measurement techniques, it is sufficient to create many types of models,
and the internal measurements available make dynamics more accurate for models with interior
structure.

By creating a series of geometric models we have determined a number of requirements for
the earlier stepsin our computational framework. First, because real-world objects contain more
than one materia, we need to be able to identify and separate the multiple different materialsin
our sampled datasets. |sosurfaces do thisin unclassified MRI data only for exactly two materials,
and only if the boundary between them is at a consistent and known value. Through classification
we can define isosurfaces for each material. Together the surfaces combine to represent all of the
materia-material boundaries. Our classification process aso provides a physical interpretation for
the data that defines a choice of isovalue for calculating a surface.

While many classification algorithmswork well at identifying materials within regions of pure
materials, they do not produce accurate resultswhere materials meet oneancther. Our investigations
have motivated the need for classification algorithms that are accurate at these boundaries. The
boundaries are where surface models are defined, and errors there cause artifacts in the extracted
models. Our new classification techniques reduce these artifacts significantly.

Third, there must be sufficient information in the collected data for our classification a gorithms
to identify boundaries. We have translated this requirement into a contrast-to-noise goa in the
goal-based collection process.

Fourth, our model-extraction techniques find isosurfaces in continuous functions. If collected
datadoes not sati sfy the Nyqui st sampling theorem, then any continuousfunction that we reconstruct

from the samples will have aliasing and hence lead to artifacts in the extracted model.
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Chapter 7

Deformed Volume Rendering

Inthischapter we present amethod for directly rendering deformed volumedata. Deformationsarea
techniquefor simulating the behavior of flexible bodies, as we outlined in the previous chapter. The
new rendering method gives us away to create images showing the simulated behavior. Figure 7.1
shows an example of volume data of a human hand with the skin peeled back to show internal

structure.

7.1 Introduction

We describe a rendering algorithm that is applicable to volume rendering agorithms that use
ray tracing techniques. Our approach extends these algorithms by directly ray tracing deformed
volumes. We inversely transform each ray into the undeformed coordinate system of the dataset
and then perform the volume ray tracing integration along that curved path. Figure 7.3 illustrates

this process with aray on theright and its inverse image on the | eft.
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Figure 7.1: Volume-rendering of athree-dimensional MRI dataset of a human hand with the “skin” kinematically peeled
away from the rest of the hand. Figure 7.6 shows a slice through the dataset with different materials identified, and a
rendered image of the undeformed data. O

7.1.1 Reated Work

Volumerendering. Computer graphics rendering has historically dealt with surfaces and a large
body of research has concentrated on rendering surfaces [Foley et a., 1990] [Kaiya, 1986]. As
computational and storage capacity have increased and volume imaging technologies have been
developed, volume datasets have become practical. As a consequence, techniques for rendering
these volumes directly have been developed [Drebin et al., 1988] [Upson and Keeler, 1988] [Sabella,
1988] to replace those that converted the volume data to surface, curve, or point primitives.

Some of these volume rendering techniques operate much like traditional ray tracing: by

intersecting rays with the volume and accumulating contributions into each pixel. While slower
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than some other techniques, ray tracing often has the advantage of producing more informative

results with sophisticated lighting modelsthat include visual cues such as shadows.

Deformations. Deformationsare apowerful tool for manipulating volumedatasets. Deformations
generdizerigid body (affine) transformations and can model flexiblebehavior. They can beproduced
from flexible body simulationsof models representing objectsin avolume dataset [Laidlaw, 19924].
They can also be created as part of amodeling system and applied to synthetically generated volume
dataproduced by ascul pting system [Sederberg and Parry, 1986] [ Coquillart, 1990] [ Galyean and Hughes,

1991] [True and Hughes, 1992] or other modeling methods.

7.1.2 Our Approach

We augment volume ray tracing techniques by introducing a method to directly render deformed
volumes. Our algorithm can be incorporated into a volume ray tracer as a modification of the data
sampling step.

Our technique is an aternative to resampling the deformed dataset and then rendering the
resampled, undeformed version. For a deformation that changes over time our technique may be
advantageous because it does not require creating a resampled dataset for each time step. Thiscan
be a significant advantage for rendering an animation, especidly if motion blur isused. It can also
be an advantage for adjusting deformations interactively because a separate, resampled dataset is
not required for each modification of the deformation. Finally, because our algorithm scales in
computation time with the number of pixels rendered, and resampling scales in time with the size
of avolume dataset, our algorithm is more efficient for small images or large datasets.

Uniform resampling of adeformed dataset causeseither oversampling wherethedataisexpanded
or undersampling where it is compressed. Oversampling requires more storage space for the
resulting dataset, and undersampling may lose information. Our agorithm avoids these potential
problems by using the original data, saving the storage and maintaining the original information.

We do not address the sampling issues involved in the volume rendering agorithms, but instead
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provide al of the original information in the dataset for those algorithms to operate on.

Our technique may perform more slowly than a resampling approach in cases where a small
number of deformations of a dataset are rendered many times. In this case, the storage and
time needed to resample the dataset are probably worthwhile. Our implementation is aso likely
to be more complex than resampling a dataset, athough resampling a deformed dataset without
introducing artifactsis non-trivial.

Our work issimilar to [Barr, 1984] and [Barr, 1986] because it operates in the coordinate system
of an undeformed object. It differs by calculating the path through the undeformed space rather

than finding a single surface intersection between an inversely deformed ray and an object.

713 Overview

Section 7.2 defines terms and presents notation that we use to describe our algorithm. In Section 7.3
we present the algorithm, which uses interval methods [Moore, 1979] [Snyder, 1992] to find inter-
sections with the boundary of a deformation, and then numerically solves a differential equation to
find the rest of the inverse ray path through the undeformed dataset. Section 7.3.3 discusses some
implementation considerations. In Section 7.4 we illustrate the technique with volume rendered

images of deformed datasets and summarize our results.

7.2 Termsand Definitions

This section defines terms and notation that we will use to describe our algorithm.

7.2.1 Interval Methods

We giveabrief review here of interval terminology. For more details see[Moore, 1979]. Aninterval
isarange over therea numbers. Weuseabar, ‘', over avariable to indicate an interval.
Givenafunctionf(X) : R = R, aninclusion function, Of (X), of f returns an interval guaranteed

to contain the image of theinterval X. An inclusion function must also have the property that the
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output interval can be made arbitrarily small for someinput interval around agiven point. Inclusion
functions generalize in a straightforward way to higher dimensions.

Interval methods useinclusion functionsfor solving problemsrobustly [ Snyder, 1992]. Inclusion
functions provide bounds for mathematical operations and so can be used to guarantee that some

property of an algorithmistrue.

7.2.2 Volume Rendering

We modd adataset as afunction

V(oody) © Roogy = R™ (7.1)

where misthe dimensionality of the dataset.
An affine transformation is often employed to place, scale and orient a dataset. We define this

as afunction

I\_/]()_()body) : I:\)gody = I:"'\?\/orld (7-2)

Note that this can be implemented as a matrix operation using homogeneous coordinates [Foley
etal., 1990].

We define aray as
r®:R= Ry (7.3)

Theinverse of theaffine transformation applied to that ray givesanother ray in the coordinate system
of the dataset

P(s) = M~1(r(9)) (7.4)

We use the following volume rendering equation to model the operation of most ray tracing
volumerenderers.

9= e PO, vi9)as @5

where f (8) and g(8) are functions that mode! light interacting with material at a point in space. See
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Figure 7.2: Examples of deformations from R?2 = R2. Note that these deformations lie completely within the plane.
Examples(a) and (b) satisfy the derivative existenceand invertibility condition. (c) mapsaline segment to apoint creating
anon-invertible Jacobian, and (d) has a singular Jacobian along the silhouette edge of itsfold. O

[Danskin and Hanrahan, 1992] for more details on this equation. We do not discuss this equation

further, except to describe how we modify P to integrate through deformed datasets.

7.2.3 Deformations

A deformation generalizes the affine transformation I\ﬁ()?body). A deformation can be defined
globally, over the entire range of Rﬁody, or over only a portion. Currently, we use deformations
defined over finite regions.

Shody C Rgody isthe region over which adeformation is defined. The deformation

D(Roody) * Shody C Riody = Raorid (7.6)

maps the undeformed space containing the dataset into world coordinates. We define byogy as
the boundary of Syody. Sworld = 5(530dy) is the image of the volume of the deformation and
bworid = [3(bbody) isthe image of the boundary of the deformation under [3(>?body). Figure 7.3 shows
these relationships for a simple two-dimensional deformation.

We define J (Xpoay) as the Jacobian of D(Xoody), i€

d
Jjj (ibody) = d_XjDi (ibody) (7.7)

We require that two conditions be met by the deformation. First, the derivative of [3(>?body),
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J (Xbody), Must exist and be invertible and continuous in S,ogy. This rules out deformations that
sgueeze aline or areainto a single point, as well as deformations that switch handedness, or “fold
over” onthemselves. Figure 7.2 gives some exampl es of two-dimensional deformationsthat satisfy
and violatethis constraint. Second, we must have an inclusion function O [3(>?body) for Xpody C Bbody-

The path through the dataset is now redefined, using the deformation in place of the affine

transformation:

P(s) = DX(r(9)) (7.8)

We have implemented our algorithm using deformations specified as tricubic B-splines [Bartels
et a., 1987] over rectangular solid regions of Rgody. These rectangular solids can be chosen to
surround the data, and can abut with one another to generate more complex deformations than can
be specified over asinglerectangular solid. Each rectangular solid has 64 control points, and shares
48 with each neighbor in order to enforce C2 continuity across the boundary. byoay, the boundary
of the deformation, isthe set of rectangular faces that are not shared. In Figure 7.3 and Figure 7.4
asinglerectangleis used to define each deformation. For Figure 7.1 a4 x 4 grid of 48 rectangular
solids and an additional three separate rectangular solids define the deformation.

We have implemented an inclusion function for these deformations using interval arithmetic

and the mean-value form [Moore, 1979].

7.3 Algorithm

In this section we describe how to find the inversely deformed path through RS,y of aray in RS, 4.
Figure 7.3 shows a simple, two-dimensional example. There are a few potential complications
in finding the path. First, parts of the inversely deformed path may not lie within any part of
the deformation. In the figure, the segment VW is an example. Second, different parts of a ray
may map to separated curve segments within Iﬁody, as with segments UV and WX. And findly,

for a deformation like case (b) in Figure 7.2, parts of a ray can lie in more than one segment
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Figure 7.3: A simple two-dimensional deformation. On the left, acircle is enclosed by a square, which is the portion of
Rﬁody that will be deformed. On theright, that square and its contents have been deformed to flatten and bend the circle.
A ray is shown on the right with the corresponding segments UV and WX mapped back onto the undeformed volume. A
similar deformation produced the three-dimensional object in Figure 7.4 by flattening and bending a cube containing a
spherically symmetric sampled dataset. O

) —

Figure 7.4: Volume-rendered images of an undeformed, spherically symmetric dataset on the left and two deformations
of that dataset in the center and on the right. A two-dimensional analog of the deformation is shownin Figure 7.3. O

simultaneously.

To solve the problem we first find all intersections of the ray with byorig, the image of the
boundary of the deformation. Section 7.3.1 describes this processin detail. In Figure 7.3 this step
finds all four points, U, V, W, and X on the top edge of the deformation. We pair the intersections
into “segments,” where each segment represent a contiguous piece of aray within the deformation.
Each segment contains a starting and ending distance, s, along the ray and a starting point in Sy

for the segment.
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Figure 7.5: Inclusion function example for Figure 7.3. The curve along the top of Syoria is aface of the deformation. We
recursively divide that face into pieces to find the intersection of a ray with the face. The pieces of the face are shown
separated by dots in the diagram. For each piece we calculate an inclusion function, shown as a rectangle around each
piece, guaranteed to contain the portion of the face. We intersect the ray with the rectangle and subdivide further if there
is an intersection. Otherwise we can ignore that piece of the face. Gray rectangles intersect the ray, and white ones do
not. Note that unshade portions of the face do not need to be subdivided as finely as others, since the inclusion function
guaranteesthereis no intersection. O

For each of these segments we set up a differential equation for P(s). Section 7.3.2 describes
this process. Asweincrement s aong aray for the volume-rendering integral, we check to seeif s
iswithin the segments along the ray. If so, we look up the data value v(P(s)) using the solution to
the differential equation for that segment. If more than one segment is active, then the data values
can be added, averaged, or otherwise combined. If sisnot within any segment, then we are outside

the deformation, and we return the val ue that V(Xnody) returns outside of the dataset.

7.3.1 Finding All Boundary Intersections

In this section we describe how to find all intersections of aray with the boundary buorig in RS
and how to group them together into segments. Figure 7.5 shows atwo-dimensiona example for a

single face of adeformation.
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We use the inclusion function Dﬁ(i(body) to find al intersections. We evaluate the inclusion
function for each rectangul ar faceof theboundary in RS, 4. Theinterval resultisathree-dimensional
interva in R?\,Orld. For example, OD([xo, X1], [y1, V1], [20, z1]) returnsan interval in R?\,Orld containing
the image of the face where'y = y;. If the ray F(s) intersects the interval in R34, We save the
intersection and boundary information in a priority queue indexed by the nearest value of swithin
the RS, interval.

Once al the faces that the ray might intersect are in the priority queue, we remove them one at
atime. If the current candidate is sufficiently small, we save it in alist of potential intersections.
If not, we subdivideit in half in each direction, repeat the interval evauation for the smaller range,
and repeat the ray intersection test for the smaller R4 interval. The new, smaller intervals may
or may not intersect the ray, so we save the intersection and boundary information only for those
R34 intervalsthat do. Figure 7.5 shows an example of the lowest-level intervalsthat are tested by
this procedure. The large interval in the upper |eft is discarded early, because it does not overlap
theray. Thefinal list of potential intersectionsis represented by the shaded boxes.

We repeat until the priority queue is empty, and then construct segments from the list of
potential intersections. We areinterested in pairing together each entrance with an exit, and we start
by identifying each potential intersection as one or the other. We use the surface normal in RS

and compare it with the ray direction. For they =y, face,

- oD oD
N(X7 Y1, Z) - W(Xv Y1, Z) A E(Xv Y1, Z) (79)
N(X,y1.2) - rq < 0 = entering (7.10)

and similarly for the other faces.

Each intersection can be represented by more than one potentia intersection in thelist because
the inclusion functions are always larger than the actual function values. Once we have subdivided
so that the size of the intervas is smaller than the error tolerance threshold of our renderer, we

coalesce potential intersections that are all entering or exiting and that have overlapping R34
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intervals into a single potentia intersection. Finally, we pair together entrances and exits into
segments. For each segment we save the start value, s, the end value, s;, and the initia point,

P(s0)eR3oqy, Where the ray first intersects the deformation.

7.3.2 Calculatingthe Path Through the Dataset

In Section 7.6 we derive the following differential equation to solvefor the path P(s) through Iﬁody:

%(s) =[3B9)] g—z (s)k. (7.11)

We set thisup as an initia value problem (1VP) rather than as aboundary value problem (BVP)
for severa reasons. First, solving aBVP is more complex and slower. Second, a BV P solver must
solvefor the entire path to evaluate any of it. We often only need to integrate part of the way along
the ray, since further points may be occluded by material, and using an IVP allows us to do this
incrementally. We find that it is reasonabl e to trade these advantages off against thelossin accuracy
as we move aong theray. By adjusting the accuracy of the IVP solution, we can limit thisloss to
an acceptable amount.

We start the solution at s with value P(sg), using the values from the segment we saved in
Section 7.3.1.

We solve this equation with a Runge Kutta [Press et al., 1992] and Adam’s method [NAG, 1993]

differential equation integrators.

7.3.3 Implementation Considerations

We discuss a few implementation details in this section.

First, because of inaccuracies in numerical integration, and because many numerical integra-
tors evaluate a derivative function slightly outside the range of its solution, the Jacobian for our
deformations must be defined slightly outside of Syorig- 10 order to maintain a continuous, invert-

ible Jacobian we project any evaluation point outside of S,qqy iNto the nearest deformation domain
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Figure 7.6: Classified data, colored histogram, and image of undeformed hand dataset shown deformed in Figure 7.1.
Thetop left image shows one slice from athree-dimensional MRI dataset of a human hand. At each spatial point we have
two datavalues. The plot in the lower left showsatop view of the 2-dimensional histogram of that data, with MRI values
along the left and bottom axes and valuesfor different materials given different colors. The slice hasthose colors applied
toit, with skin orange, musclered, fat and bone marrow yellow/green, and tendon black. The right image showsthe same
dataset volume-rendered. O

eEd

Figure 7.7: A photograph of a jade plant, a volume rendering of undeformed data collected from the jade plant, and a
volume rendering of that data deformed. The right-hand image is one frame from those shown in Figure 6.9 O

boundary point and use the Jacobian value there.

Second, we have found that the interval evaluation for finding intersectionsis the most costly
part of our implementation. We have significantly increased performance by caching the interva
calculations for thefirst three levels of the subdivision hierarchy.

Third, our initia rays must start outside of adeformation in order tofind their initial intersection
points. Theinterval methods could beextended tofind aninitia point within thedeformation, but our
implementation does not do this. Rays created within a volume must start with “ pseudo-entrance’
intersectionsfor each segment active at the point the new ray was spawned. Theintersection-finding

algorithm will then pair them up with exiting intersections to create segmentsfor the new ray.
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7.4 Results

We have shown several examplesof volumedatasetsdirectly rendered with deformations. Figure7.1
shows MRI volume data classified to identify skin, fat, muscle, tendon, and bone. The skin is
deformed to ped it back from the other materials, showing the interior structure of the dataset.
Figure 7.6 shows a single dlice through the dataset with materias identified by their colors, and
arendering of the hand with no deformation. The dataset was classified using the partial volume
mixtures algorithm.

Figure 7.4 illustrates a rendering of simple deformations applied to a simulated MRI dataset of
asolid ball.

Figure 7.7 shows a photograph of a living jade plant, an undeformed rendering of MRI data
collected from the jade plant, and a deformed version of the jade plant rendered with our algorithm.
The deformation was cal cul ated as one frame of an animation showing how ajade plant might move

(see Figure 6.9).

7.5 Conclusion

We have described an agorithm for directly ray tracing deformed volume data.  The algorithm
inversely deforms each ray and tracesits curved path through the undeformed data. We have shown
several examples of images rendered using our implementation.

There are several advantages to directly ray tracing deformed volumes. As an aternative to
creating a new regularly sampled dataset by resampling the deformed one, our technique provides
a more concise representation for a deformed volume. This conciseness is particularly useful for
multiple deformations, or for deformations that vary over time. The space savingsis aso a benefit
when rendering small images of large datasets, because it is proportional to the size of the dataset,
while the run-time cost is proportional to the size of the image. Our technique also avoids the
oversampling or undersampling that isimplied by resampling a deformed dataset.

While the implementation increases rendering time in our volume ray tracer by afactor of two
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to three, we have several avenues to explore for speeding the calculation. Because most of the cost
isin finding intersections, we propose implementing tighter inclusion functions, using an interval
Newton method to converge on a solution more quickly. We could also exploit coherence morein
theinterval eval uations by adaptively caching them in addition to the static caching of thefirst three

subdivision levels.

7.6 Derivation of Deformed Path

We derive the differential equation in Section 7.3.2 here. The derivation isin Einstein Summation
Notation (ESN) [Blinn, 1992].
P(s) = D1(F(s)) is a portion of the path in RS, It is only defined where D=1(7(s)). Thisis

where theray iswithin Syorig. 1n thoseregions, by definition:

B9 = [ s+ Pl (7.12

Differentiating and rewriting the integrand using the definition of P and the chain rule,

%(S) = (D7 Hi(r©)ris 713

Because we restrict the Jacobian of the deformation to be invertible at all points, the derivative of

theinverse deformation isthe matrix inverse of the Jacobian of the deformation.

(O Ruorta) = (I Rooa)] ), (7.14)

so Equation 7.13 becomes:
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o= (ICEN ), 149 (7.15)

Note that the argument of J is the path location in , P(s) and that we have a known initial
ody

condition at P;(sp).
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Chapter 8

Conclusions and Future Work

This chapter summarizes our work and presents conclusionsin the first section and then discusses

some future research directionsthat our work suggests may be fruitful.

8.1 Conclusions

We have addressed the problem of creating geometric models of real-world objects. Thisisamajor
problemin computer graphics, and our resultshave applicationsin scientific research, education, and
entertainment. We have chosen to use MRI as our measurement modality because it is relatively
non-invasive, measures chemical properties of living subjects very well, and provides us with
measurements of internal structure.

We have presented a computational framework for creating geometric models and images from
MRI data. Theframework consistsof threemain steps. Thefirstisdatacollection; the second, tissue
classification; and the third, model-building and visualization. Within the stages of the framework

we have implemented anumber of new a gorithmsthat help to make model sand images. Weoutline



8.1 Conclusions 126

the results of our new algorithms and the interactions between them in this section.

8.1.1 Goal-based Data Collection

The novel contributions of our new paradigm for choosing MRI collection parameters are in its
goal-based framework, in the choice of goals for the optimization procedure, and in the use of the
optimization step to steer the acquisition process during acquisitions. Our framework provides a
methodol ogy for adding goal s and new protocol sto the set that we have implemented. The goalswe
implement are motivated by our desire to distinguish adjacent materials sufficiently well to be able
to produce geometric models from the data. Many of the objectives are aso generally applicable
to applications such as medica or biological imaging. These goas differ from other work in that
they do not find parameters yielding the most contrast or highest contrast-to-noise ratio, but rather
find parameters yielding sufficient contrast in the least amount of time. Any number of materials
can be specified by a user from low-resolution test datasets, and optimal collection parameters
are generated taking into account inherent machine limitations and fixed parameters such as field
of view and resolution. Finally, because values of the function we optimize are consistent from
protocol to protocol, we can comparethem and choose the most appropriate protocol or combination,

independent of whether it produces scalar or vector-valued data.

8.1.2 Bayesian Classification

In the second stage of our computational framework we have developed a new methodology for
creating Bayesian classification algorithms from assumptions about the data-collection process.
Using the methodology we have created three new agorithms for classifying scalar and vector-
valued volume data. Our algorithms use a continuous reconstruction of the dataset and calculate
a continuous histogram of the data over regions representing each voxel. We derive intensity
probability density basis functions for both pure materials and mixtures of materials due to the
band-limiting effects of the data-collection process. Our classification process models histograms

over voxel regions using the materia and mixture basis functions and uses a probabilistic approach
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to fit the parameterized modelsto a histogram over each voxel.

Inthe partial volume mixtures approach, we model ed each voxel asalinear combination of pure
materials and mixtures of two materials. In the two boundary distance approaches we formulated
amore accurate model of voxels near boundaries between pure materials. The boundary distance
approaches classify voxels near boundaries more accurately, but at alarger computational cost.

We demonstrated the success of our techniques on simulated and real databy classifying datasets

of ahuman hand, human brains, and a bee, anong others.

8.1.3 Mode-Building and Visualization

Through a sequence of examples we have shown that classified MRI volume data can be used to
create both static and dynamic models. The level of detail in the models is somewhat less than
can be produced with surface scanning techniques, but the inclusion of internal structure adds
significantly more information to volume models and makes dynamic simulations more accurate.
With theinternal structure, the behavior of different internal materials such as bone, muscle, and fat
can be taken into account.

We have also presented a new agorithm for directly rendering deformed volume data. Thisis
particularly useful for creating imagesof flexible-body simulationsbecauseit avoidsthe storage cost
and resampling difficultiesinherent in creating anew sampled dataset for each step inatime-varying

deformation of volumetric data.

8.1.4 Interaction of Framework Stages

Throughout our investigationswe have discovered that each stage of theframework mandates certain
conditionson theresultsof earlier stages. Starting with the model -extraction and visualization stage
of our pipeline, requirements feed back and influence earlier stages. This stage requires that its
input volume data identify different materials and the boundaries between them.

Weinfer from thisrequirement aneed to classify thedatathat we collect, and to use an algorithm

that works well at boundaries between materials. Our new algorithms address this problem with
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more accuracy than previous methods.

The classification a gorithms al so place requirements on the data that we collect. The materias
and boundaries between them must be distinguishablein the data. We translate thisinto a contrast-
to-noise ratio goal within our goal-based data-collection process.

Themodel extraction and classification algorithmsal so require that we reconstruct a continuous
function from datasets, and so we require that the data we collect satisfy the Nyquist sampling
theorem.

The feedback of these requirements to the earlier stages of the framework helps tailor results
to the geometric modeling problem, providing us with tools that create more accurate geometric

models.

8.2 Extensions

Our work suggests a number of directions to consider for future research. We organize them here

in the context of our model-building framework.

8.2.1 Goal-based Data Collection

Within the goal-directed data-collection domain, wewould liketo extend the repertoire of collection
protocols and goals. Extending the protocols includes incorporating more collection parameters,
such as tip angle and sweep width (see Table 2.1), into the optimization process, as well as adding
to thelist of protocols that can be supported. Using the technique on awider variety of examples
will give us more feedback on its efficacy in providing us with data that will be useful for studying
anatomy and devel opment.

Extending the goals includes formulating more goals for disparate uses of MRI data. The
imaging goal of achieving a particular contrast-to-noise ratio serves our classification algorithms
well, but might not be the best goal for other applications.

Our framework should also prove useful in choosing concentrations of MRI contrast agents to
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enhance particular materials. By modeling the effect of various concentrations of a contrast agent
on materialsand incorporating that model into our goal-based framework, we can tailor the contrast
agent concentration to achieve better-quality datain lesstime.

The model of the MRI process we used is somewhat limited. It does not take into account the
mixing of multiple materials within a single voxel measurement, and would be somewhat difficult
to derive for anew protocol. Extending the model to include multiple materials might be a useful
project. Theimplementation of thisshould be strai ghtforward, using the same L evenburg-Marquardt
non-linear parameter estimation technique.

We could also model the MRI process by numerically solving the Bloch equations [Bloch, 1948]
to predict data values as a function of protocol parameters. This would have the advantage of
working for an arbitrary protocol, aslong as we can define the protocol in terms of a pulse-program
whose behavior is modeled well by the Bloch equations.

Through the numerical solution of the Bloch equations, it might be possible to generate new
pul se-programsviaagenetic al gorithm that evol ved pul se programs and eval uated their effectiveness

viaour objective function.

8.2.2 Artifactsin MRI Data

While we have addressed some of the artifacts that occur in MRI data, there are a number that
we have chosen to ignore. Different materials have different magnetic properties and boundaries
between them that cause susceptibility artifacts in MRI images. These artifacts occur primarily at
boundaries between materialsor near accidental air bubbles, whichtend to stick to these boundaries.
The artifacts are bright and dark patterns with a characteristic appearance within the data.

We could compensate for effects near boundaries with an extension to our boundary distance
classification algorithm, since information about the boundary is cal culated as part of the algorithm.
The characteristic appearance of the artifacts caused by bubbles could be mitigated as a pre-
processing step or as part of the classification process.

Nonlinearities in the gradient coils used to encode spatial information in MRI data can lead to
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datasetswith geometric distortions. We have not addressed geometric distortionin thiswork, except
to avoid its manifestations through judicious size and placement of the objects that we measure. In
principle, however, we should be able to compensate for these distortions through caibration of a
particular MRl machine. By understanding the errors in the underlying static magnetic field and
the gradients superimposed on it, we can model the geometric distortion created by those errors and

compensate for it.

8.2.3 Clasdification

Our classification algorithms have proven useful on the examples that we have applied them to, but
wewould liketo try them on more types of datain order to learn moreabout their characteristicsand
breadth of applicability. Classifying datain an atlas of MRI datasets of a particular animal could
provide interesting results, both in the classified data itself and in feedback about the algorithms.
Our a gorithmsal so should prove accurate at estimating volumes, especially for small regionswhere
errors near boundaries are significant compared to the entire volume.

There are a number of extensions to the classification algorithms we would like to suggest.
We have interpolated neighboring samples in classifying voxels, but would like to take further
advantage of this local geometric information. Incorporating the geometric information into the
prior probabilities for each voxel should help to avoid single misclassified voxels without losing
detail information that post-classification filtering processes destroy.

Another possible method for incorporating more geometric information into the classification
processwoul d beto defineanew type of voxel-info withthat information and to deriveaclassification
algorithm based on that data. Combining the histogram voxel-info that we have implemented with
new voxel-info should produce better results than either alone.

Deriving new histogram basis functions would enable the algorithms to better classify data by
explicitly handling more situations. We would like to relax the assumption that objects consist of
regions of uniform materials. We can parameterize the histogram basis functions by the relative

content of each material, and anticipate amore continuous classification that woul d introduce fewer
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artifacts. Wewouldasoliketo derive basisfunctionsfor geometries other than the pure and surface-
boundary casesthat we haveimplemented. Whilethese are thetwo most common geometries, edges
wherethree materials cometogether, pointswhere four materialsmeet, and features likemembranes
that are thinner than our sampling rate also occur and are important within the context of geometric
models.

Finally, two future directionsfor research includeimplementation of the boundary distancealgo-
rithm to incorporate non-uniform response of materia swithin the sampled volume and accel eration

of our classification agorithms.

8.24 Model Building and Simulation

Our model-building and simulation work also impliesanumber of directionsfor augmentation. One
particularly interesting direction isin modeling and simulating the behavior of complicated flexible
bodies. Thisgoa has inspired much of the work in this thesis, particularly the use of MRI datato
measure the interna structure of objectsin addition to their externa structure.

Futureresearch couldincludeatestbed for flexible-body simulationsthat incorporates new types
of constraints for sliding flexible bodies over one another without interpenetration and for making
structural connections between both flexible and rigid bodies. Thistype of simulation environment
would provide a predictive tool with medical, and scientific applications, and could be used for

entertainment purposes as well.

8.25 Volume Rendering

Volume rendering is a relatively new technique and holds a lot of promise for generating images
with visual information and cues that can improve understanding of the objects being rendered.
New techniques that generate different types of images through new, more general models of light
propagation through materials have solid research potential. Textures and translucency within

volumes of materials hold promise in generating these new looks.
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8.3 Summary

Our work on acomputational framework for creating geometric modelsfrom MRI volume data has
demonstrated the utility of the framework, led to a number of agorithmic results, and indicated

many avenues for future research.
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